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Abstract

This paper presents a method of estimating the geome-
try of a room and the 3D pose of objects from a single 360◦

panorama image. Assuming Manhattan World geometry, we
formulate the task as an inference problem in which we es-
timate positions and orientations of walls and objects. The
method combines surface normal estimation, 2D object de-
tection and 3D object pose estimation. Quantitative results
are presented on a dataset of synthetically generated 3D
rooms containing objects, as well as on a subset of hand-
labeled images from the public SUN360 dataset.

1. Introduction
3D scene understanding from images has been an active

research topic in computer vision, enabling applications in
navigation, interaction, and robotics. State-of-the-art tech-
niques allow layout estimation from a single image of an
indoor scene [5, 26, 30], which is an underconstrained prob-
lem. Most prior work estimates the layout of a room corner
only or assumes a simple box-shaped geometry. Since a
standard camera lens has a limited field of view, an incre-
mental procedure is usually necessary to recover a whole
scene [2]. A simple alternative is to capture panorama im-
ages, assuming that objects of interest are visible. For ex-
ample, the PanoContext method [39] recovers the full room
layout from one panorama image, while still assuming a
box-shaped room and box-shaped objects. Walls and floor
are used as context information to recognize object cate-
gories and positions.

In this paper, we build on insights from the PanoCon-
text work, but no longer assume a box model for the scene
and objects. In contrast to the bottom-up object proposals
from edges [39], we employ more robust top-down methods
for object detection and 3D pose estimation. To accomplish
this, we first transform the single panorama image into a
set of perspective images from which we estimate per-pixel
surface orientations and object detections. From these we
obtain a first scene layout up to an unknown scale. Next,
objects are detected using a trained detector and initial 3D

∗The work was done while the authors were with Rakuten.

Figure 1: Example output: Indoor scene reconstruction
from a single panorama image. Top: input image with 2D
object detection bounding boxes. Detection is carried out
in perspective images and the bounding box coordinates are
projected into the panorama image. Bottom left: estimated
surface orientations. Bottom right: reconstructed 3D room
geometry and furniture items (top view).

poses are estimated using a libary of 3D models. Global
scale is estimated indirectly by projecting 3D object models
of known dimensions into the scene. We sample room hy-
potheses and evaluate their posterior probability. See Fig. 1
for an example output of our algorithm.

The contributions of this work are: (1) We relax the box-
shape assumption of [39] to a Manhattan World assumption,
reconstructing the complete shape of the room. (2) Object
location and pose is estimated using top-down object detec-
tion and 3D pose estimation using a public library of 3D
models, (3) We introduce a context prior for object and wall
relationships in order to sample plausible room hypotheses.
We evaluate the accuracy of the method on synthetically
generated data of 3D rooms as well as results on images
from the public SUN360 dataset. Please also see the sup-
plementary video for qualitative results.
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2. Related work

We put our work into context by discussing prior work
in the areas of surface estimation from images, 3D object
models, and context priors.

Geometry estimation. Early seminal work in layout es-
timation includes surface estimation from an image [16] by
learning a mapping from an input image to a coarse ge-
ometric description. Similarly, the Make3D method esti-
mates a 3D planar patch model of the image, with images
and depth maps as training data [27]. More recently much
progress has been made estimating pixel-wise normals from
images [8, 11]. For indoor scenes, assuming a Manhattan
World geometry, vanishing points can be detected and the
camera parameters recovered. For example, Lee et al. [20]
proposed a method to interpret a set of line segments to re-
cover 3D indoor structure, demonstrating that the full image
appearance is not necessary to solve this problem. Hedau et
al. [13] modeled the whole room as a 3D box and learned
to classify walls, floor, ceiling, and other objects in a room.
Work by Schwing et al. [29, 30] estimates a 3D box-shaped
room from a single image using integral geometry for ef-
ficiently evaluating 3D hypotheses. The work by Wang et
al. [35] has shown improved accuracy by estimating clut-
tered areas, including all objects except the room bound-
aries. In this paper we estimate surface orientations of the
whole scene [13, 20] and treat the orientations in object
regions separately. Other approaches include Cabral and
Furukawa [2], who use multiple input images to apply 3D
reconstruction and estimate a piece-wise planar 3D model.
Building on the work by Ramalingam and Brand [24], re-
cent work by Yang and Zhang [38] recovers 3D shape from
lines and superpixels in a constraint graph. However, it does
not supply scene semantics or a structured scene represen-
tation. Complementary to these two methods we estimate
the 3D room geometry together with 3D objects.

3D Objects. Objects contained within a room have been
modeled at different levels of complexity. For example,
Lee et al. [19] fit 3D cuboid models to image data, demon-
strating that including volumetric reasoning improves the
estimation of the room geometry. Hedau et al. [14, 15]
showed that the scene around an object is useful for build-
ing good detectors, however it was also limited to cuboid
objects. Del Pero et al. [5] proposed part-based 3D object
models, allowing more accurate modeling of fine structures,
such as table legs. Configurations of their detailed models
are searched using MCMC sampling. In their ‘Box in the
Box’ paper, Schwing et al. [28] used a branch-and-bound
method to jointly infer 3D room layout and objects aligned
with the dominant orientations. Satkin et al. [26] proposed
a top-down matching approach to align 3D models from a

database with an image. The method employs multiple cues
to match 3D models to images. In recent work by Su et al.,
a CNN was trained for pose estimation for 12 object cate-
gories (from the PASCAL 3D+ dataset) from rendered 3D
models [32, 36]. Tulsiani et al. [34] combine object local-
ization and reconstruction from a single image using CNNs
for detection and segmentation, and view point estimation.
This top-down information is fused with shading cues from
the image. While these are viable approaches, the number
of categories is limited and our object shapes of interest are
typically not represented exactly. We therefore estimate 3D
object models from a model database, similar to the recent
work in [17].

Context priors. Pieces of furniture tend not to be uni-
formly distributed within a room, but follow certain rules
that include physical constraints, such as non-intersection,
or less rigid functional constraints, such as aligning a bed
with one of the walls or leaving some space to access all
areas of the room. Such prior knowledge has been em-
ployed to improve layout estimation. For example, Del Pero
et al. [4, 5] introduced constraints to avoid object overlap
and to explicitly search for objects that frequently co-occur,
such as tables and chairs. In PanoContext, Zhang et al. [39]
show that context evidence of an entire room can be cap-
tured from panoramic images. They learn pairwise object
displacements to score their bottom-up object hypotheses.
However, their box-shaped room model does not take rela-
tive orientation or distance to walls into account. Some in-
sight can be gained from the graphics literature where gen-
erative models have been used for 3D model search. For
example, Fisher and Hanrahan proposed a method for effi-
cient search of 3D scenes [9]. Pairwise relationships were
learned from 3D Warehouse scene graphs, but only relative
distances, not orientations, were taken into account. Mer-
rel et al. [22] proposed a density function for room layout
design that encodes numerous design rules, such as respect-
ing clearance distance around objects and the relative align-
ment of objects with each other. Handa et al. [10] used
geometric constraints to automatically generate 3D indoor
scenes as training data for semantic labeling. The method
proposed here scores room layout hypotheses, in a 2D top-
down view, with pairwise energy terms, encoding object-to-
object and object-to-wall constraints, but allows for more
flexibility compared to the generative model in [22].

3. Generative model
Given an indoor scene S = (W,O), defined by a set of

walls W = {wi}Nw
i=1 and a set of objects O = {oj}No

j=1, we
formulate the room layout estimation in a Bayesian frame-
work, where the model parameters consist of

Φ = (c, λ, pwi , θ
w
i , p

o
j , θ

o
j ), (1)



Figure 2: Algorithm overview. From a single panorama image the proposed method estimates initial 3D room geometry
and 3D object poses. Subsequently we sample a global posterior distribution which includes terms for room layout, object
poses, and a context prior.

which includes the camera model c, the absolute room scale
λ, wall center positions and wall orientations {pwi , θwi }, as
well as center positions {poj} and the orientations {θoj} of
objects {oj} in the scene S. We formulate the estimation
task as maximizing the probability P (Φ|I) of the model
parameters Φ given an input image I of the scene S. This is
equivalent to maximizing the posterior P (I|Φ)π(Φ)/P (I)
to obtain the set of optimal parameters:

ΦMAP = argmax
Φ

P (I|Φ)π(Φ) , (2)

where π(Φ) is the prior on the model parameters, and P (I)
is assumed uniform. In what follows, we give details on
the different components of the model and the estimation
process. The overall approach is summarized in Fig. 2.

3.1. Room layout likelihood

We decompose the likelihood in Eq. 2 as follows, making
a conditional independence assumption:

P (I|Φ) = P (I|λ, poj , pwi , θwi )P (I|θoj ), (3)

obtaining two likelihood terms, one for the scene includ-
ing object positions, and one for object orientations. Both
terms are evaluated by comparing the projected image D
of the predicted 3D scene model (i.e., obtained with esti-
mated model parameters), with the observed orientation im-
age. Our justification for decomposing the likelihood is that
we synthesize only the walls of the scene, not the (occlud-
ing) objects. Object bounding boxes, which are not always
accurate, serve as masks. Therefore we do not account for
object orientation when evaluating the first term. Note that
like in previous work the camera parameters c are approxi-
mated by placing it at the center of the spherical image at a
known height, e.g. 1.70m for the SUN360 dataset [39].

In the following we describe the processing steps to eval-
uate the first likelihood term. We first transform the spheri-
cal panorama input image I into a set of K perspective im-
ages {Ik}Kk=1, which no longer contain strong distortions.

(a)

(b)

(c) (d)

Figure 3: Processing steps: (a) Surface orientations of the
observed input image with detected object regions used for
masking. (b) Surface orientations of rendered image of pre-
dicted models with occluding objects (i.e., silhouettes serve
as masks). (c) Room geometry after surface alignment at
unknown scale. (d) Room geometry after plane fitting.

This transformation returns a set of perspective images with
overlapping regions, in our case 6 images with a 90◦ field of
view and 30◦ of overlap between adjacent images. For each
image Ik we estimate surface orientations at each pixel by
combining estimates of their Orientation Map (OM) [20]
and Geometric Context (GC) [13]. We apply GC to the
panorama and combine the OM and GC in the floor region



to obtain wall positions and orientations [39]. We segment
the panorama image into regions of three orthogonal sur-
face normal directions (see Fig. 1, bottom left). The orien-
tation surface image for each Ik is used to recover partial
3D room geometry. The surface normals in each perspec-
tive image are converted to 3D points using vanishing points
and camera-to-floor distance using the method in [6]. Each
image corresponds to a separate 3D point cloud with un-
known scale. We apply the constraint that corresponding
pixels in overlapping regions in the images have the same
depth: We globally align the point clounds by minimizing
the sum of 3D point distances of points corresponding to
the overlapping image regions. This is followed by greedy
plane fitting, starting from the largest segment, using Iter-
ative Closest Points (ICP) [1], resulting in an initial esti-
mate of 3D room geometry, i.e. positions and orientations
of walls {ŵi}, up to scale, see Fig. 3.

We also run object detection in each image {Ik}Kk=1 us-
ing a Faster R-CNN (details in Sect. 4). The coordinates of
object locations are reprojected to the panorama image I,
and non-maximum suppression is applied to eliminate re-
dundant detections. Since the camera c is oriented toward
the center of I, assuming the center position at 0◦, the posi-
tions {pj} of detected objects {oj} can be derived from the
polar coordinates. Absolute distances of objects to the cam-
era remain unknown at this stage. Having estimated a 3D
scene model including walls and object positions, we define
the likelihood term for the room layout as

P (I|λ, {poj}, {pwi , θwi }) ∝ exp
[
−Es(I, {poj}, {pwi , θwi })

]
.

(4)
The cost function Es evaluates a room hypothesis by repro-
jecting the synthesized 3D scene back into the panoramic
view and compare surface normals:

Es(I, {poj}, {pwi , θwi }) = 1− Nc

Npix
, where (5)

Nc =
∑
m∈I

1l(Im)=l(Dm)(m) . (6)

The cost is low when surface orientations of the predicted
3D scene agree with the orientation image I. The terms
l(Im) and l(Dm) are the discrete surface orientation labels
at pixel location m in the surface orientation maps of im-
ages I and D, respectively, 1 is the indicator function, and
Npix is the number of pixels in I. In previous work [4, 20],
a similar term is used to evaluate wall geometry hypotheses.
However, the presence of objects and occluded walls in the
scene, which add noise to the estimation, were not consid-
ered. Here, we propose to mask detected objects in the sur-
face orientation images as follows: In the observed image,
bounding boxes of detected objects serve as masks, while
in the predicted images, silhouettes of 3D objects serve as
masks, see Fig. 3 (a) and (b). Hence Es is evaluated in im-
age regions of visible wall regions. Since visible wall areas

are directly related to object size, the pixel-wise cost func-
tionEs is sensitive to the global scale λ and object positions
{pj}. For example, if the estimated room scale λ is smaller
than the true scale, objects in the synthetic scene will be
placed closer to the camera, thereby occluding larger wall
regions, which is penalized by the cost function Es.

3.2. Object pose estimation

We define the second factor in the likelihood term in
Eq. 3 as:

P (I|{θoj}) ∝ exp
[
−Eo(I, {θoj})

]
, (7)

where the cost function Eo evaluates object orientation hy-
potheses {θoj} by comparing HOG descriptors [3] of de-
tected objects in I and rendered images from correspond-
ing 3D models. For the initial object pose estimation {θ̂j}
(superscript omitted for clarity in this section), two distinct
sources of data are employed: a set of rendered images R
of 3D models with known pose, and a set of visually similar
web images W found by Google Image search. The aux-
iliary set of images helps to regularize the solution when
jointly estimating object pose, as demonstrated in [17] and
confirmed in initial experiments. We therefore take the
same approach as [17] with two extensions. First, we do not
assume images with clean background and therefore extract
the object in the input image by automatic grab-cut segmen-
tation, assuming that the image center contains the object
and image corners are part of the background. Further, [14]
assumes that a very specific category type is known (e.g.
Windsor chair). Our approach works with just knowing the
abstract category (chair), and uses visual search to find web
images similar to the target object. Therefore our approach
is more robust against cluttered background and generalizes
to a wider range of object categories. The web images are
obtained automatically by retrieving the first 400 results of
Google Image search for visually similar images within the
detected object category. Background is removed from the
web images by co-segmentation, since we assume that this
image set contains a shared common object [7].

Given object bounding boxes, HOG descriptors are com-
puted for each region in a 4× 4 image-grid using unsigned
gradients with `2-normalization, and are concatenated into
a global image descriptor. A CRF model is then employed
to regularize the pose estimation. Let T denote the cropped
input image (or multiple images if the same object appears
more than once in the scene) of objects for which we want
to find the 3D pose θ. Each node in the CRF represents an
image I ∈ T ∪ W , and the label space is the quantized
pose space sampled uniformly from yaw and pitch angles
(360 poses from yaw ∈ [0◦, 360◦] and pitch ∈ [0◦, 45◦],
roll angle is fixed). For image I we search for the K near-
est neighbors among a set of rendered images R in a 3D
database.



The unary potential is defined by the number of near-
est neighbors in the rendered image set with the same dis-
cretized pose:

E(i)
unary = exp

− ∑
{Ik|Ik∈N (K)

i ⊆R}

1θi=θk

 (8)

where 1 is the indicator function and N (K)
i denotes the set

of the K = 6 nearest neighboring images of Ii in terms of
HOG-distance.

The binary potential between two images Ii and Ij in
T ∪W encourages smoothness between the predicted poses
of neighboring images:

E
(i,j)
binary = dγ(θi, θj) d

HOG(Ii, Ij), (9)

where dγ(θi, θj) is the an angle distance function defined as

dγ(θi, θj) = min(d(θi, θj), γ) ,where (10)
d(θi, θj) = |ρi − ρj |+ |ξi − ξj |, (11)

and γ is a threshold, ρ is the yaw angle, and ξ the pitch
angle. The energy function for the CRF is then:

ECRF =
∑

Ii∈T ∪W
E(i)

unary +
∑

{Ii∼Ij |Ii,Ij∈T ∪W}

E
(i,j)
binary, (12)

and CRF inference is performed using the TRW-S al-
gorithm [18]. Qualitative results can be seen in Fig. 4.
3D model retrieval is performed by finding the nearest
neighbor in HOG space among the images in R. The cost
function Eo for object orientation is the Euclidean distance
of the descriptors.

3.3. Context prior

The context prior, π(Φ), evaluates the relative positions
and orientations of objects and walls in a 2D top-down view
of the scene. The object-to-wall cost Eo,w measures dis-
tance and alignment of an object with its closest wall seg-
ment:

Eo,w(Φ) =

No∑
j=1

‖poj − pwi∗(j)‖+ νn

No∑
j=1

‖noj
>nwi∗(j)‖, (13)

where poj is the position of object oj , i∗(j) =
argmini d(poj , p

w
i ) is the index of the closest wall segment

to object oj , noj and nwi∗(j) are the normals of the object and
its closest wall, respectively, and νn is a weighting factor.
The object-to-object cost Eo,o is a function penalizing the
overlap between objects.

Eo,o(Φ) =

No∑
j,k=1

A (b(oj) ∩ b(ok)) , (14)

Figure 4: 3D pose estimation: Two pose estimation results
for a segmented input image (top left) shown with the five
3D models closest in HOG space.

where A is the area of intersection between two object
bounding boxes, denoted as b. The prior term combines
the object-to-wall and object-to-object costs and is defined
as

π(Φ) = exp [−(Eo,w(Φ) + µEo,o(Φ))] , (15)

where µ is a weighting factor.

3.4. MAP estimation

We use a sampling strategy to find room layouts with a
maximum posterior solution, as defined in Eq. 2. From an
initial estimate of 3D room geometry and 3D object pose,
we use the context prior term to sample locations and ori-
entations of objects, as well as the global scale parameter λ.
Scale is sampled uniformly within a fixed interval, while
object locations are sampled from a normal distribution that
has large variance in the object-camera direction, account-
ing for distance ambiguity, and small variance normal to this
direction, giving high confidence to the location predicted
by the detector and lower confidence to the bounding box
size. Object orientation is sampled from a normal distribu-
tion with a mean of the orientation found in section 3.2. For
each of the NS configuration samples we evaluate the like-
lihood terms (Eq. 3) and context prior (Eq. 15) and output
the hypothesis with the maximum posterior value. Imple-
mentation details are given in the next section.



4. Results
The algorithm is validated on a subset of the public

SUN360 dataset [37]. It contains panorama images of in-
door scenes at high resolution (up to 9K) which we rescale
to 2K to reduce computation time. We obtain reasonable
initial pose estimations when object detection bounding
boxes and segmentation are accurate (see Fig. 5(a)). How-
ever, directly applying state-of-the-art techniques is insuffi-
cient to obtain correct room layouts, as shown in Fig. 5(b).
Even though surface alignments estimated from different
perspective views return correct room shape, the absolute
scale remains ambiguous. In addition, the initial object pose
estimation {θ̂oj} (e.g., bed orientation) is not always accu-
rate, and object distances to camera are unknown. In com-
parison, our proposed method returns more accurate results
as shown in Fig. 5(c).

4.1. Quantitative evaluation

To evaluate the accuracy of the proposed method, we cre-
ated ground truth data by manually annotating object posi-
tions and orientations in panorama input images. 34 bed-
room images are selected from SUN360 dataset and the
results are shown in Table 1. We measure positional er-
ror as distance between object centroids projected onto the
2D ground plane and orientation error as the angle between
ground truth and estimated pose. As seen in Fig. 6, the es-
timation error is lower for certain object classes, e.g., TV,
where the pose can typically be estimated reliably and the
object prior helps by favoring alignment with nearby walls.
The error for chairs tends to be higher for several reasons:
There is a large variation and symmetry of chair shapes,
which can lead to less accurate bounding boxes and pose
estimation. The example in Fig. 4 shows that the appear-
ance for chairs can be very similar for rotated versions of
the model. Our method does not attempt to estimate the ori-
entation of potted plants since they tend to be rotationally
symmetric. In addition, the joint estimation of room layout,
scale and object pose allows us to automatically generate a
2D floor map from one panorama image, see Fig. 8(a).

Our method is compared to PanoContext [39] on the
same image set using the code provided by the authors with
default parameters. For each scene, 200, 000 hypotheses per
room are generated together for predicting the object types
and positions as well as generating the room layout (within
a box-shaped room) as described in [39]. The hypothesis
with the top-1 score is selected as estimation result. Since
PanoContext does not contain room scale estimation, results
are scaled to match with ground truth (see Fig. 6). As can
be seen in Fig. 8(b), both of false positive (FP) and false
negative (FN) rates of PanoContext are very high: for bed,
chair, and TV, the FP rate is 59.1%, 43.2%, and 17.2%, re-
spectively, while the FN rate is 22.7%, 89.2%, and 72.3%,
respectively.

(a) (b) (c)

Figure 5: Example results on SUN360 images: (a)
Panorama images with detected objects. (b) Initial lay-
out from estimated surface orientations. (c) Optimized lay-
out of our result. Input images from the SUN360 dataset
are on the left. The center column shows the initial lay-
out estimation from object detection and orientation sur-
face (with unknown global scale), the right column shows
results after use of the context prior. Absolute wall height
equals 2.5m×λ. The dimensions of 3D models from public
datasets are known and remain fixed.

In the comparison, only true positive detection results
are chosen for position error calculation (see Table 1). Ori-
entation estimation is not available in their method. Note
that PanoContext has many more false detections, but that
the location accuracy can be higher, since the correct detec-
tions in PanoContext are based on accurate low-level line
features.

To further assess the method’s accuracy, including scale
estimation, we perform evaluations on generated 3D scenes
as 3D ground truth. We synthesize 88 rooms of arbitrary
shape, based on existing room templates, and size, contain-
ing objects. See Fig. 7 for examples. Wall heights are sam-
pled from a normal distribution with mean 2.7m and 0.2m
standard deviation. We add an offset to the length of each



Object Position error (cm) Orientation error (deg)

Method Ours [39] Ours [39]

Bed 25.0 ± 17.4 23.7 ± 21.3 1.0 ± 1.4 n/a
TV 4.7 ± 6.4 5.6 ± 4.8 1.4 ± 1.1 n/a
Chair 52.3 ± 66.0 17.3 ± 14.6 10.7 ± 15.0 n/a
Plant 8.7 ± 12.0 n/a n/a n/a

Table 1: Evaluation on SUN360 images: Object position
and orientation errors measured against ground truth. [39]
does not estimate orientation.

(a) (b)

Figure 6: Reprojection of 3D scene into panorama im-
age: (a) Ground truth. (b) Our result. Comparison of the
estimated layout to ground truth. Surface orientation and
3D objects are overlaid onto the input image. Camera pa-
rameter approximations and shape differences between real
objects and 3D models can cause slight misalignment.

Figure 7: Synthetic room data. Three example rooms out
of 88 that were used in our quantitative evaluation.

wall (only if longer than 0.7m), uniformly sampled from
[−0.3m, 0.3m]. Objects are placed at random, and their
position and orientation are updated by sampling from the
context prior. Experimental results are reported in Table 2
and show the contributions of each step separately (object
pose, room scale/wall height estimation). Overall estima-
tion using NS = 3000 samples is accurate to 0.8-8◦ and
2-20cm, depending on object class.

4.2. Implementation details

Object detection. We use the Faster R-CNN from [25]
for object detection and recognition. The MS COCO [21]
dataset is used for training, since it contains a large number
of indoor object categories (e.g., chair, couch, potted
plant, bed, dining table, toilet, tv, laptop, microwave,
oven, refrigerator, clock, vase). The model was trained
on the 80,000 image training set for 240,000 iterations
with VGG16 networks [31], using top-2000-score Region

Proposal Networks (RPN) [25] and Multi-scale Combina-
torial Grouping (MCG) [23] as object proposals. The mean
average precision (mAP) for all 80 object classes is 49.0%,
and 26.5% for the intersection over union (IoU) values of
50% and 95%, respectively. The same metric and validation
set was used for the MS COCO 2014 primary challenge.
Note that our detection performance is competitive with
the current state-of-the-art method by He et al. [12], which
achieved corresponding mAP scores of 48.4% and 27.2%.

Object pose estimation. We collected a set of 3D models
from the 3D Warehouse [33] and rendered each in 360
poses. For hotel rooms, we used 9 beds, 16 chairs, 4 plants,
6 TVs, and crawled 300-350 Internet images per class using
Google image search. Note that results in Table 1 are for
detected objects only. The number of nearest neighbors K
is set to 6. The truncation threshold γ is set to 20◦. TRW-S
is run for 100 iterations to estimate object pose.

Context prior and sampling. Scale, object location and
orientation are sampled by evaluating the context prior.
We use 8 sampling epochs of 25 samples each. In every
epoch the sample with largest context prior term is used
as seed sample for the next epoch. The normal sampling
distribution along the camera-to-object-center direction has
the obtain location as mean, and a variance of 0.1 times the
camera-object distance, and a variance of 0.005 times this
distance along the perpendicular direction. Orientation is
sampled from a normal with variance 0.1 rad, and scale
is sampled uniformly, in terms of wall height, from the
interval [2.0m, 3.5m]. The weight νn in Eq. 13 is set to
10.0, and µ in Eq. 15 to 0.25.

Computation time. The layout estimation pipeline is
implemented on a desktop PC with i7 processor and 8GB
RAM. The main bottleneck is currently the object pose
estimation step using CRF optimization, which takes ap-
proximately 1-2min per object class. The object detection
method in the pipeline takes 7s on average for 18 perspec-
tive images using a GRID K520 GPU. One room layout
hypothesis evaluation requires about 30s. In comparison,
PanoContext [39] requires over 2 hours to complete the
overall computation with a Xeon E5-2630 v4 processor.

5. Conclusions
In this paper we presented a formulation for indoor lay-

out estimation. We demonstrated its ability to recover com-
plex room shape with Manhattan World assumption from
a single panorama image using detected objects, their pose
and their context in the scene. The proposed method does
not rely on video, multiple images, or depth sensors as in-
put [2] nor is it limited to box-shaped room or object models
as in recent work on panoramic reconstructions [39]. Com-



Average errors after initialization with context term
bed chair TV plant bed chair TV plant

εobj. orient.(deg) 5.2±0.5 4.1±1.8 2.8±1.5 n/a 0.8±0.6 8.0±6.4 0.8±0.7 n/a

εobj. pos.(cm) 197.6±57.6 186.7±99.6 156.21±73.0 174.7±70.3 21.0±13.0 7.1±7.3 2.0±7.0 6.9±0.5

εwall height(cm) n/a (initialized at 2.5m) 4.9±0.1

Table 2: Evaluation on synthetic dataset of 88 rooms. The table shows the mean error with standard deviation of object
orientations, object positions, and wall height. The benefit of the proposed context prior is shown by comparing the results af-
ter the initialization stage (left) and after including context-based sampling (right). Average chair orientation error increases
slightly. Note that the orientation error of potted plants is omitted, since they do not have a canonical orientation.

(a)

(b)

Figure 8: (a) Automatic 2D floor map generated by our method with estimated scale. The method estimates the global
scale by transferring the scale of known 3D objects to scene objects. Examples shown were generated from SUN360 images.
(b) Room layout generated by PanoContext [39]. Results are obtained using the code provided by the authors with default
parameters. 2D floor maps are generated for visual comparison.

pared to [38], our method produces semantic output, tak-
ing the class, location, and pose of objects into account and
introduces a context prior to this underconstrained prob-
lem. We evaluated the method quantitatively on a syn-
thetic dataset and qualitatively on images from the SUN360
dataset. A limitation of the proposed method is that it cur-

rently relies on the output of an object detector. Objects
that are not detected are currently not part of the final 3D
model. Recent CNN-based methods for predicting depth
and semantic labels [8] or 3D object pose [32] from images
may be leveraged to improve the results.
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[11] C. Häne, L. Ladický, and M. Pollefeys. Direction matters:
Depth estimation with a surface normal classifier. In CVPR,
June 2015. 2

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 7

[13] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial
layout of cluttered rooms. In ICCV, 2009. 2, 3

[14] V. Hedau, D. Hoiem, and D. Forsyth. Thinking inside the
box: Using appearance models and context based on room
geometry. In ECCV, 2010. 2

[15] V. Hedau, D. Hoiem, and D. Forsyth. Recovering Free Space
of Indoor Scenes from a Single Image. In CVPR, 2012. 2

[16] D. Hoiem, A. A. Efros, and M. Hebert. Recovering Surface
Layout from an Image. IJCV, 75(1):151–172, 2007. 2

[17] Q. Huang, H. Wang, and V. Koltun. Single-View Recon-
struction via Joint Analysis of Image and Shape Collections.
ACM Transactions on Graphics, 34(4), 2015. 2, 4

[18] V. Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization. TPAMI, 28(10):1568–1583,
2006. 5

[19] D. C. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating
Spatial Layout of Rooms using Volumetric Reasoning about
Objects and Surfaces. In NIPS, 2010. 2

[20] D. C. Lee, M. Hebert, and T. Kanade. Geometric Reasoning
for Single Image Structure Recovery. In CVPR, 2009. 2, 3,
4

[21] T. Lin, M. Maire, S. Belongie, L. D. Bourdev, R. B. Gir-
shick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick. Microsoft COCO: Common Objects in Context.
arXiv:1405.0312v3, 2015. 7

[22] P. Merrell, E. Schkufza, Z. Li, M. Agrawala, and V. Koltun.
Interactive Furniture Layout Using Interior Design Guide-
lines. ACM Transactions on Graphics, 30(4), 2011. 2
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