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ABSTRACT

Motion-blurred images are the result of light accumulation over the

period of camera exposure time, during which the camera and ob-

jects in the scene are in relative motion to each other. The inverse

process of extracting an image sequence from a single motion-

blurred image is an ill-posed vision problem. One key challenge is

that the motions across frames are subtle, which makes the gen-

erating networks difficult to capture them and thus the recovery

sequences lack motion details. In order to alleviate this problem, we

propose a detail-aware network with three consecutive stages to

improve the reconstruction quality by addressing specific aspects

in the recovery process. The detail-aware network firstly models

the dynamics using a cycle flow loss, resolving the temporal am-

biguity of the reconstruction in the first stage. Then, a GramNet

is proposed in the second stage to refine subtle motion between

continuous frames using Gram matrices as motion representation.

Finally, we introduce a HeptaGAN in the third stage to bridge the

continuous and discrete nature of exposure time and recovered

frames, respectively, in order to maintain rich detail. Experiments

show that the proposed detail-aware networks produce sharp im-

age sequences with rich details and subtle motion, outperforming

the state-of-the-art methods.
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Figure 1: Video generation example. The left column shows a

blurry input image (top), and two zoomed-in regions. Rows to the

right show frames extracted by the model released by Jin et al. [1] (top)

and the proposed method (bottom), respectively. Our method recovers

sharper detail (car antenna) and better preserves small motion (rear

light).

1 INTRODUCTION

Motion blur is a common artifact when taking photos and is caused

by either camera shake [2ś4] or object motion [5ś8] during the

exposure period within which light from the scene is accumu-

lated [9, 10]. Observing a motion-blurred image, humans seem to be

able to infer a plausible explanation of both the scene appearance

and the underlying motion.

This paper aims to recover a temporal sequence of clean and

sharp image frames from a single motion-blurred image, to mimic

the above human ability. This task involves solving a severely under-

constrained inverse problem, i.e., to recovering multiple images

from a single image which is the integration of the former. To some

extent, the task is related to single image deblurring [11ś13]. How-

ever, our task contains additional complexity, as we also want to

get a set of temporally ordered sharp images that gave rise the sin-

gle blurred version. This is particular challenging, since the image
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integration operator is temporal-order invariant therefore multi-

ple valid solutions exist. Moreover, besides multiple sharp frames,

we also aim to recover the underlying motion across neighboring

frames, yet often the motion is small between time-consecutive

frames. For example, without modeling the subtle motion across

frames, as shown in the fifth row of Fig. 1, the frames recovered by

Jin et al. [1] look identical to each other. Finally, a motion-blurred

image is generated during a continuous exposure period, yet one has

to approximate this process by discretizing the time axis, leading

to loss of information in image details.

To address the above challenges, we propose a generative model

trained in three stages for video sequence extraction from a motion-

blurred image. The first stage, called BaseGAN, learns to recover

sharp video frames with a cycle flow loss to constrain that the

motions across frames before and after the recovery are identical,

thus resolving ambiguity in the recovery process. The second stage,

GramGAN, is designed to recover subtle motions, employing a

Gram matrix for motion feature representations. By minimizing

the difference of Gram matrix description between the recovered

frames and sharp frames, subtle motions are recovered. In the third

stage, HeptaGAN training is carried out, taking multiple images,

in our case seven, as input and generating the same number of

output images. Specifically, we synthesize a motion-blurred image

Iblurry from the seven input images {Iin } and learn to recover a

sequence of sharp images {Iout } from the blurry image. The recov-

ered frames {Iout } are again used to produce a blurry image I ′
blurry

.

The HeptaGAN model is optimized by not only forcing the recov-

ered frames {Iout } to be identical to the input sharp frames {Iin },

but also by minimizing the distance of the blurry images before

and after the recovery procedure, Iblurry and I ′
blurry

, respectively.

With this bi-cycle consistency, we minimize the disparity during

the continuous-to-discrete transform.

Trained with this three-stage architecture, our generative model

produces visually pleasing video frames given a motion-blurred

image, as shown in Fig. 1. Different from existing approaches, which

estimate frame sequenceswithmultiplemodels, e.g., [1], ourmethod

is able to extract multiple frames with a single model, which is

more efficient and is better capable of exploiting spatio-temporal

information. It is notable that the generators in different stages

share weights.

Our main contributions are as follows:

• We develop a detail-aware networks to train a generative

model, with each stage specifically addressing a challenge in

the recovery of sharp video frames from a motion-blurred

image.

• In order to model subtle movements across neighboring

frames, GramGAN is proposed to produce frames preserving

those subtle movements via Gram matrix.

• We propose a HeptaGAN module with bi-cycle consistency

tominimize the lost information in the continuous-to-discrete

transform, which helps not only to extract a sharp video se-

quence but also restore rich detail.

• Experiments show that our method achieves the state-of-

the-art performance for producing a video sequence from

a motion-blurred image, demonstrating its superiority over

existing methods.

2 RELATEDWORK

Our work in this paper is closely related to image deblurring, video

deblurring and video generation, which are briefly introduced as

follows, respectively.

2.1 Image Deblurring

CNN-based approaches have been successfully applied to vari-

ous tasks of computer vision [14ś18], including image deblurring

[19, 20]. For non-blind deblurring, Xu et al. [21] introduced a CNN

with two submodules for deconvolution, establishing a connection

between traditional optimization schemes and CNN models. Sun

et al. [22] employed a CNN to predict probabilistic blur kernels at

patch level. An MRF was introduced to encourage motion smooth-

ness, and blur was removed with a patch-level image prior. Schuler

et al. [23] built a model for blind deblurring based on a traditional

CNN, incorporating image deconvolution. More recently, Nah et

al. [24] proposed a deep multi-scale CNN to remove complex mo-

tion blur based on content and adversarial loss, generating sharp

images. Zhang et al. [8] introduced a framework to recover sharp

images via learning how to make blurry images. Shen et al. [25, 26]

develop two semantic face deblurring networks to remove blur

from blurry facial images.

2.2 Video Deblurring

Video deblurring exploits the temporal dynamics implied from

continuous image sequences [27ś31], with applications of 3D re-

construction [32], SLAM [33], and object tracking [34]. Deep learn-

ing methods have been successfully applied to this problem. For

example, Wieschollek et al. [35] built a recurrent network archi-

tecture to handle arbitrary spatial and temporal input sizes. Kim

et al. [36] proposed a spatio-temporal recurrent method, which

contains a dynamic temporal blending network considering the

temporal consistency and shares features at the testing stage. Su et

al. [37] proposed a DBN model to recover the central frame from

neighboring frames. To model spatio-temporal characteristics and

restore sharp images, Zhang et al. [4] introduced 3D convolutions

and adversarial learning.

2.3 Video Generation

Generating videos from texts, images or videos poses challenges to

existing generative models [38ś40]. For motion prediction, recent

methods focus on training transform networks to compress the

current information and generate a sequence of future frames [41ś

44]. Using a GAN, Mathieu et al. [41] predicted future frames based

on adversarial loss and image gradient difference loss. Villegas et

al. [42] built a model based on an Encoder-Decoder CNN and a

Conv-LSTM to capture the spatial-temporal dynamics. Their model

effectively handles complex variations in pixel space. Zhao et al. [44]

proposed a two-stage framework to generate frames and then refine

by temporal signals.

The closest work to ours for producing a video sequence from

a blurry image is the pioneering work in [1]. It first estimates

the middle frame of the temporal sequence and then sequentially

reconstructs pairs of frames, one forward and one backward in time,

in each step. Following this work, Pan et al. [45] proposed an EDI

model to reconstruct a sharp video from a single blurry frame based
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Figure 2: Cascaded structure for generator training. Consecu-

tive input frames are averaged and input to BaseGAN to recover sharp

frames. At Stage-2, frames are averaged to be new blurry images

and sent into GramGAN to recover images with more appreciable

subtle movements. HeptaGAN at Stage-3 guides to recovers disparity

information.

on event camera, while Purohit et al. [46] try to learn a motion

encoder for blurred images based on a pre-trained convolutional

recurrent video autoencoder network. Our approach differs mainly

in that we employ a single model, trained in three stages, compared

to using different models to reconstruct a multi-frame sequence.

3 APPROACH

To approach the task of extracting multiple frames from a motion-

blurred image, we propose to train a generator G in a cascaded

structure with three stages (Fig. 2): (1) In the first stage, a BaseGAN

module with a flow loss function generates a sharp and realistic

video without ambiguity. Seven continuous frames are averaged to

simulate a motion-blurred image which is input to the BaseGAN,

and the output is seven sharp frames. (2) Subtle movements are

addressed by a GramGAN module in the second stage, which takes

the output of the first stage as input and outputs seven sharp frames.

(3) The third stage employs HeptaGAN training to recover the infor-

mation of the discrete predicted frames regarding the continuous

exposure process.G is an encoder-decoder model with 30 convolu-

tional layers and seven consecutive frames output.The generator

structure remains unchanged and weights are shared in the three

stages. During inference, G predicts seven output frames from a

motion-blurred image with a single forward pass.

3.1 Ambiguity Resolving with Flow: BaseGAN

The BaseGAN module in the first stage is a generative adversarial

network. The generator produces seven frames recovering as much

information as possible and the discriminator aims to discriminate

the predicted frames against real frames to ensure the predicted

frames are realistic. We adopt the illumination as input since it is

the most salient channel. The pixel-wise MSE loss is widely used for

blurry
I

G

7

1syn
I

1

1syn
I

flow
I

1

2syn
I

7

2syn
I

1

sharp
I

2

sharp
I

3

sharp
I 4

sharp
I

5

sharp
I 6

sharp
I

7

sharp
I

… …

Figure 3: BaseGAN architecture with optical flow. Seven con-

tinuous sharp frames are averaged into a blurry image as input to

a generator to recover seven sharp frames {I isyn1, i = 1, ..., 7}. Flow

images are calculated based on the 1st and 7th synthesized images.

The flow is applied to warp the synthesized image I7syn1 and results in

I1syn2. Likewise, I
1
syn1 is warped with the flow to produce I7syn2. These

two images, I1syn2 and I
7
syn2, are constrained to be close to their sharp

counterparts I1
sharp

and I7
sharp

, to make sure the recovered motion

across frames is identical to that before recovery.

generating deblurred images, whichmay have high PSNR values but

are unsatisfying due to over-smoothed textures. Thus the content

loss G for the central frame in this paper includes both MSE and

perceptual loss [47] as

Lcentral
content =








Isharp −G(Iblurry )









+








Φ(Isharp ) − Φ(G(Iblurry ))







 ,

(1)

where G(Iblurry ) is the deblurred image, and Isharp corresponds

to the sharp frame. Φ denotes the features obtained from the last

convolution layer of VGG19 [48], which is employed to measure

the perceptual loss.

The procedure of recovering the other six neighboring frames is

unstable if employing the same content loss defined above, because

different orders among frames produce the same motion-blurred

image. Thus, the content loss for these frames can be represented

as [1]:

L
pair
content =

Õ3

i=1

�

[I i
sharp

, I 8−i
sharp

]+ − [G(I i
blurry

), G(I 8−i
blurry

)]+

�

+

�

[I i
sharp

, I 8−i
sharp

]− − [G(I i
blurry

), G(I 8−i
blurry

)]−

�

,

(2)

Oral Session H1: Emerging Multimedia Applications MM '20, October 12–16, 2020, Seattle, WA, USA

386



1

sharp
I

2

sharp
I

3

sharp
I

blurry
I

G

Input

1 1

ram

( , )

G

I I
1 2

( , )

Gram

I I
1 3

( , )

Gram

I I

2 1
( , )

Gram

I I
2 2

( , )

Gram

I I
2 3

( , )

Gram

I I

3 1
( , )

Gram

I I
3 2

( , )

Gram

I I
3 3

( , )

Gram

I I

1

syn
I

4

syn
I

7

syn
I

Synthese Peceptual loss Gram matrix

1

syn
I

1

syn
I

2

syn
I

3

syn
I

4

syn
I

5

syn
I

6

syn
I

7

syn
I

Figure 4: Gram matrix components for three sequential frames. Blocks on the diagonal are the individual frames themselves, while the

off-diagonal blocks are correlations between the sequential frames.

where [x ,y]+ = |sum(x ,y)|2 and [x ,y]− = |sub(x ,y)|2 denote the

summation and subtraction operation on corresponding positions

of two input images, respectively.

To generate realistic sharp frames, an adversarial loss function

is introduced with the goal to fool the discriminator D:

Ladv = log
�

1 − D(G(Iblurry ))
�

(3)

whereD(G(Iblurry )) classifies a recovered frame to determinewhether

or not the reconstructed frame is a real image.

Since the reconstruction is invariant to the temporal order of

frames, we introduce a loss function based on optical flow, shown

in Fig. 3. Seven sharp frames are averaged to create a blurry image,

which is input into a generator to produce seven synthesized sharp

frames. The first and seventh synthesized frames, I1syn1 and I
7
syn1,

are then fed into a PWC-Net [49] which computes pair-wise optical

flow. This is applied to the first and seventh synthesized frames to

obtain new seventh and first frames, respectively. The loss function

is calculated based on the input (sharp) and output (syn2) frames as

Lf low = | |I1
sharp

−W (I7syn1, I
7→1
f low

)| |22

+ | |I7
sharp

−W (I1syn1, I
1→7
f low

)| |22 ,
(4)

where Isharp are real sharp frames, I
i→j

f low
is the optical flow im-

age from the ith to the jth frame.W (I7syn1, I
7→1
f low

) means that we

generate the new first frame using the seventh synthesized frame

and flow images via spatial transformer networks (STN) [50]. By

constraining the generation process with the flow loss, the unique

order among sequential frames is maintained in training and thus

recovered in inference. During training in the first stage, the loss

functions are combined as

L = Lcentral
content + L

pair
content + αLadversar ial + βLf low . (5)

In order to balance the content, adversarial and flow losses, we use

hyper-parameters α and β to yield the final loss L.

3.2 Learning Subtle Movements: GramGAN

The first stage guides the generator to produce sharp realistic

frames, while the content loss is weak in learning motion across

frames. The loss is very small in the case of subtle movements,

resulting in small pixel variations across neighboring frames. This

makes it difficult to learn the motion dynamics in training, recon-

structing nearly identical sequence frames. Thus in the second stage,

we focus on learning subtle movements, to improve the robustness

of the model in the extreme case.

To this end, we introduce the Grammatrix at this stage to process

high-level semantic features and incorporate temporal information.

Note that the Gram matrix has been employed in recent work to

represent motion for dynamic texture synthesis and generation of

time-lapse videos [43, 51]. However, to the best of our knowledge,

this is the first time to introduce it to the task of reconstruction from

blurry images. Further, in contrast to prior work, which applies the

Gram matrix on the features of a GAN discriminator, our model

uses the Gram matrix in the generator.

The second training stage, GramGAN, is illustrated in Fig. 4.

Three of the seven output frames of the first stage are averaged to

create a blurry image, and a Grammatrix is computed by combining

the feature maps of three sequential frames (I , I ′, I ′′). The feature

map of a synthesized frame is a 3-dimensional tensor, whose axes

are width, height, and channel, respectively. Firstly, we concatenate

feature maps along an additional axis to produce a 4-d tensor, whose

first axis corresponds to the three sequential frames. Then we re-

shape the 4-d tensor into a 2-d one, F, whose first axis is combined

from the first two axes and second axis is from the last two axes.

Finally, the product of the new tensor F and its transpose describes

motion by spatio-temporal statistics. Thus the Gram matrix entry

for three frames can be be formulated as a perceptual term as
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Figure 5: HeptaGAN schematic. Given seven continuous frames,

our system simultaneously creates a corresponding blurry image based

on function F and learns a video recovery functionG .G outputs seven

frames, serving as input to F to produce a new blurry image. The

learning constrain can be written as: G(F ({Iin })) = {Iout } ≈ {Iin }

and F (G(Iblurry )) = I ′
blurry

≈ Iblurry .

Gram(I , I ′, I ′′) =
1

M
FTF , (6)

whereM = CHW denotes the product of channel, height and width

of feature maps.

Given seven output frames by the first stage, there are nine

combinations of three frames with equal distance along the time

axis (i.e., I1I2I3, I2I3I4, ... , I1I4I7). The additional loss function with

regard to the Gram matrix is

LG =

9
Õ

i=1








Grami (G(Iblurry )) −Grami ({Isharp })







 , (7)

where Iblurry is the blurry image produced by averaging the three

frames {Isharp } taken from the seven frames output by the BaseGAN.

As Fig. 4 shows, I1syn , I
4
syn , and I7syn from the generated seven

frames G(Iblurry ) are taken as input to calculate the Gram matrix.

We constrain these three frames by referring to the corresponding

ground truth {Isharp }. Grami (·) corresponds to the i-th way of

taking three images.

Note that in Fig. 2 we take three frames of the seven frames from

the first stage, rather than all of them to simulate a blurry image.

The motivation is that, by doing so, we can interpolate the motion

across the three frames into the fine-grained motion dynamics

across the output seven frames. That also explains why we use

the first synthesized frame (I1syn ), the midterm frame (I4syn ), and

the last frame (I7syn ), as the start, intermediate and end state of the

motion dynamics, and use the corresponding input three frames to

constrain them.

There are several advantages of GramGAN training in this stage.

First, we can learn the motion dynamics more efficiently with the

Gram matrix as motion representation, avoiding generation of mul-

tiple identical frames. Second, with less input and more output

images, the model is able to unravel fixed time period into more dis-

crete time steps with fine-grained motion. We verify this in Sec. 4.3.

Thirdly, łcontinuous" and łdiscrete" correspond to
�

1
T

∫ T

t=0
IS (t )dt

�

and
�

1
M

ÍM−1
t=0 IS [t ]

�

, respectively. The real motion-blurred images

are generated based on the former, while our goal is to recoverM

sharp images IS like the latter. Therefore, we use HeptaGAN to cal-

culate the differences between two blurry images, and two groups

of sharp images to push our model keep original information.

3.3 Disparity Recovery: HeptaGAN

Output frames from the trained first and second stages are already

realistic and exhibit more appreciable subtle motions across neigh-

boring frames. The exposure process in the real world producing

the motion-blurred image is continuous. However, our task of re-

covering multiple frames from a single motion-blurred image is a

reverse process and it is actually discrete. To address this, we pro-

pose a HeptaGAN stage, using a blur function F and a blur-removal

function G to encourage the preservation of original information

contained in the single motion-blurred image.

In particular, given frames generated from the GramGAN stage

as input, the idea is to produce a blurry image and recover the sharp

frames by using the produced blurry image, and the recovered sharp

frames are averaged to produce a blurry image again, forming a

bi-cycle process. We train the model in an unsupervised manner in

this stage. As illustrated in Fig. 5, we build two function approxi-

mators F and G. F produces blurry images from consecutive sharp

frames and G recovers the video sequence from the synthesized

motion-blurred image. Because of the assumption that motion-

blurred images can be produced by averaging multiple frames, the

model F is the average function and we only train G. Given seven

sharp frames {Iin }, the motion-blurred images can be produced

as Iblurry = F ({Iin }). We expect that G can generate continuous

sharp frames {Iout } = G(Iblurry ), whose corresponding averaging

motion-blurred frame I ′
blurry

= F ({Iout }) is the same as Iblurry .

This imposes the bi-cycle consistency. Note that, different from the

traditional CycleGAN [39] which simultaneously trainsG and F on

paired or unpaired images, the input to our HeptaGAN are seven

consecutive frames. We only trainG , but with two cycle-like losses

which are discussed as follows and shown in Fig. 5.

The L1 loss is used to constrain this learning process as

LC =
1

N

N
Õ

∥F ({Iin }) − F (G(F ({Iin })))∥1

+

1

7N

K
Õ

7
Õ

j=1








I
j
in − (G(F (I

j
in)))










1
,

(8)

where N is the number of seven-frame groups.
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Figure 6: Qualitative comparison. Two input images and zoomed

in regions are shown in the first row. The 2nd/6th rows show results

of the method by Jin et al.[1]. The 3rd/7th to 5th/9th rows show the

performance of our model trained after one (B), two (BG) and three

stages (BGH). Note the movement across frames (referring to the

fixed-position red boxes) is recovered successfully by the model BG,

and the sharper detail inside the yellow boxes recovered by the fully

trained BGH model.

4 EXPERIMENTS

We test our approach on the widely used public GOPRO dataset [24],

which is first introduced along with evaluation metrics. Then im-

plementation details are given and ablation study is conducted, and

a comparison with the state of the art is reported. Finally, we test

the generalization of our method to blur caused by bokeh.

4.1 Dataset & Metrics

In our experiments we use the GOPRO_Large_all frames of the

GOPRO dataset, including 22 training and 11 test videos, respec-

tively. We average consecutive frames to produce blurry images. To

compute the fidelity of the extracted frames, we use the PSNR as a

metric. Additionally we check how accurately the motion across

frames is preserved by computing the end-point error (EPE) of

flow across the generated frames with respect to the flow from the

ground truth frames.

Table 1: Performance comparison with [24], [1], [45] and [46] on

the GOPRO_Large_all dataset and ablation study of model G after

different stages of training.

Method PSNR SSIM EPE

Nah et al. 28.98 0.911 -

Jin et al. 26.98 0.881 17.93

Pan et al. 28.49 0.920 -

Purohit et al. 30.58 0.941 -

B 28.14 0.905 13.62

BG 29.65 0.921 11.25

BGH 30.64 0.942 10.03

4.2 Implementation Details

During training, model weights are initialized from a normal distri-

bution with zero mean and a standard deviation of 0.01. We update

all weights with a mini-batch of size 4 in each iteration. To augment

the dataset, 128 × 128 patches are cropped at random locations

and horizontally mirrored at random. The model is trained with an

annealing learning rate scheme, starting with 10−4 and decreasing

to 10−5 after convergence. The hyper-parameters α and β in Eq. (5)

are empirically set as 0.0005 and 0.001.

The training procedure is as follows. The generator G is trained

using BaseGAN at first, and then we incrementally train G with

GramGAN and HeptaGAN to fine-tune the model. The generator

G in the BaseGAN, GramGAN and HeptaGAN shares weights, thus

a video recovery model G is obtained which is robust to resolve

ambiguity (BaseGAN), preserve subtle movements (GramGAN)

and recover disparity information (HeptaGAN). The ablation study

compares the model performance after different stages of training.

During inference, given a motion-blurred image, we generate seven

frames in one forward pass of G.

4.3 Ablation Study

In this section, we conduct experiments to investigate the effect

of the different training stages. We show both qualitative results

and quantitative results in the form of PSNR and EPE values. We

compare the following models:

• B is the network trained as BaseGAN. The input to this model

is a motion-blurred image, which is created from seven real

consecutive frames.

• (2) BG is the generator trained with BaseGAN (Stage-1) and

GramGAN (Stage-2) stages. The input to the GramGAN is

the output of the BaseGAN.

• (3) BGH is the model trained after all three stages, adding

the HeptaGAN third stage.

Table 1 shows the PSNR and EPE values. Performance increases

after each training stage, with the fully trained model, BGH, achiev-

ing the best performance.

Fig. 6 shows qualitative results of the different models. Compared

tomodelB, the results of BG showsmore evident subtle movements

across neighboring frames, suggesting the effectiveness of learning

motion dynamics using GramGAN. The BGHmodel recovers more

details and creates sharper images due to the disparity recovery.
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Figure 7: Example of interpolation of subtle motions. 42

frames (from left to right, top to bottom) are extracted by the proposed

method based on the input image shown in Fig. 1. Please check the

movement of the rear light comparing the first frame with last one.

Note that there are no 42 original frames as the input blurry frame

is produced by averaging only 7 frames. By iteratively applying the

model we are therefore able to create slow-motion videos from blurry

images.

Please check the area marked with the yellow bounding boxes. The

contrast of digit ł3" by BGH is higher than BG. The ear of the man

is also recovered with more details by BGH.

Fine-grainedMotion Interpolation. We are able to recovermore

than seven frames by iteratively applying modelG to output frames.

Seven output frames form six groups (I1I2, I2I3, ... , I6I7), and each

can be averaged to produce another blurry image, which can be fed

in our generator to again produce seven frames. By doing so, we

recover 6 × 7 = 42 frames with extremely subtle motions from one

blurry image, as shown in Fig. 7. We can even recover arbitrarily

many frames by repeating this procedure. This demonstrates our

model can be employed to disassemble a single motion-blurred

image into multiple frames with interpolated fine-grained motion

dynamics across frames.

4.4 Comparison with Existing Methods

We compare our method with different methods, including [1],

[45], [46], [24], [27] and [37]. [1], [45] and [46] are the state-of-

the-art methods for extracting image sequences from a motion-

blurred image. [24], [27] and [37] are popular image deblurring

methods. Table 1 shows quantitative results. Our method achieves

higher PSNR values than [1], [45] and [46]. The smaller EPE value

suggests that our method is better able to learn subtle motion across

frames. We suspect the improvement is attributed to our specific

handling of the challenges faced by extracting video from a single

motion-blurred image. Figs. 1 and 6 show qualitative comparisons,

Blurry

Blurry

Su et al.

Nah et al.

Ours

Ours

Blurry Kim et al. Ours

Figure 8: Comparison with deblurring methods. Methods pro-

vided by Kim et al. [27], Su et al. [37] and Nah. et al. [24] are special-

ized for recovering a sharp frame from a blurry image.

highlighting the improved ability of our method to recover subtle

motion and image details.

We also compare ourmethodwith image deblurringmethods [24].

Since deblurring methods typical output only a single image, we

select the central frame of our reconstruction for comparison. As

shown in Table 1, our method outperforms the one in [24]. This

may be explained by the fact that we use consecutive sharp frames

to produce motion-blurred images during training, while [24] only

trains with one sharp image per motion-blurred image. Qualitative

results comparing with [24], [27] and [37] are shown in Fig. 8. The

proposed method produces sharper and more realistic frames.

4.5 Generalization to Other Types of Blur

Our model is trained on the GOPRO dataset, within which the blur

artifacts are mainly caused by camera shake. In this section we

apply our method to images containing a different type of blur. The

KITTI dataset [52] includes images captured by a camera mounted

on a moving vehicle, thus the dominant blur is caused by bokeh

rather than camera shake. We test our model on this dataset and

show example results in Fig. 9. The results demonstrate that the

proposed method is able to recover sharper frames with evident

subtle motion across neighboring frames and rich details for various

kinds of blur artifacts.
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Blurry Frame1 Frame2 Frame3 Frame4 Frame5 Frame6 Frame7

Figure 9: Results on the KITTI dataset. The first column shows details of the two blurry input images in the top row, and the following

seven columns show images generated by the proposed model. The subtle motion outlined by boxes with different colors shows that the model

generalizes well to blur caused by bokeh.

5 CONCLUSION

This paper presents a detail-aware network, which is a cascaded

generator to extract an image sequence from a blurry image. To

handle the problems of ambiguity, subtle motion, and loss of details,

we train a model using a BaseGAN constrained with optical flow, a

GramGAN, using a Gram matrix as motion representation, and a

HeptaGAN with a bi-cyclic constraint. Experimental results demon-

strate that our generator not only produces compelling results but

also outperforms state-of-the-art methods.
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