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Abstract
Image deblurring is a classic problem in low-level computer vision with the aim to recover a sharp image from a blurred input
image. Advances in deep learning have led to significant progress in solving this problem, and a large number of deblurring
networks have been proposed. This paper presents a comprehensive and timely survey of recently published deep-learning
based image deblurring approaches, aiming to serve the community as a useful literature review. We start by discussing
common causes of image blur, introduce benchmark datasets and performance metrics, and summarize different problem
formulations. Next, we present a taxonomy of methods using convolutional neural networks (CNN) based on architecture,
loss function, and application, offering a detailed review and comparison. In addition, we discuss some domain-specific
deblurring applications including face images, text, and stereo image pairs. We conclude by discussing key challenges and
future research directions.
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1 Introduction

Image deblurring is a classic task in low-level computer
vision, which has attracted the attention from the image pro-
cessing and computer vision community. The objective of
image deblurring is to recover a sharp image from a blurred
input image, where the blur can be caused by various factors
such as lack of focus, camera shake, or fast target motion
(Abuolaim and Brown 2020; Chen and Shen 2015; Kang
2007; Sun et al. 2015). Some examples are given in Fig. 1.

Non-deep learning image deblurring methods often for-
mulate the task as an inverse filtering problem, where a
blurred image ismodeled as the result of the convolutionwith
blur kernels, either spatially invariant or spatially varying.
Some early approaches assume that the blur kernel is known,
and adopt classical image deconvolution algorithms such as
Lucy-Richardson, or Wiener deconvolution, with or without
Tikhonov regularization, to restore sharp images (Schmidt
et al. 2013; Szeliski 2010; Xu et al. 2014). On the other
hand, blind image deblurring methods assume the blur ker-
nel is unknown and aim to simultaneously recover both the
sharp image and the blur kernel itself. Since this task is ill-
posed, the solution is regularized using various additional
constraints (Bahat et al. 2017; Cho and Lee 2009; Fergus et
al. 2006; Xu and Jia 2010). While these non-deep learning
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Fig. 1 Examples of different blurry images. Causes for blur include a
camera shake, b out-of-focus scene, c moving objects, and d multiple
causes, respectively

methods show good performance in certain cases, they typi-
cally do not perform well in more complicated yet common
scenarios such as strong motion blur.

Recent advances of deep learning techniques have revolu-
tionized the field of computer vision; significant progress has
been made in numerous domains, including image classifi-
cation (He et al. 2016; Simonyan and Zisserman 2014) and
object detection (He et al. 2017; Isola et al. 2017; Ren et al.
2015; Zhu et al. 2017). Image deblurring is no exception: a
large number of deep learning methods have been developed
for single image and video deblurring, and have advanced the
state of the art. However, the introduction of new methods
with different network designsmakes it challenging to obtain
a rapid overview of the field. This paper aims to fill this gap
by providing a survey of recent advances, and to serve as a
reference point for new researchers.

Specifically, we will focus the discussion on recently
published deep learning based image and video deblurring
methods. The aims of this paper are:

– To review the preliminaries for image deblurring, includ-
ing problem definitions, causes of blur, deblurring
approaches, quality assessment metrics, and benchmark
datasets for performance evaluation.

– To discuss new developments of deep learning models
for single image and video deblurring and provide a tax-
onomy for categorizing the existing methods (see Fig. 2).

– To analyze the challenges of image deblurring and dis-
cuss research opportunities.

The paper is organized as follows. In Sect. 2, we dis-
cuss the problem formulation, the causes of blur, the types
of deblurring, and image quality metrics. Sections 3 and 4
introduce the CNN-based non-blind and blind image deblur-
ring methods, respectively. Loss functions applied in deep
deblurring methods are discussed in Sect. 5. We introduce
public benchmark datasets and evaluations in Sects. 6 and 7,
respectively. In Sect. 8, we review three deblurring meth-
ods for specific domains, for face, text, and stereo images.
Finally, we discuss the challenges and future opportunities
in this research area.

2 Preliminaries

2.1 Problem Formulation

Image blur can be caused by various factors during image
capture: camera shake, in-scenemotion, or out-of-focus blur.
We denote a blurred image Ib as

Ib = Φ(Is; θη), (1)

where Φ is the image blur function, and θη is a parameter
vector. Is is the latent sharp version of the blurred image Ib.
Deblurring methods can be categorized into non-blind and
blindmethods, depending onwhether or not the blur function
is known (see Sects. 3 and 4). The goal of image deblurring
is to recover a sharp image, i.e., finding the inverse of the
blur function, as

Idb = Φ−1(Ib; θη), (2)

where Φ−1 is the deblurring model, and Idb denotes the
deblurred image, which is the estimate of the latent sharp
image Is .

Motion Blur An image is captured by measuring photons
over the time period of camera exposure. Under bright illu-
mination the exposure time is sufficiently short for the image
to capture an instantaneousmoment.However, a longer expo-
sure time may result in motion blur. Numerous methods
directly model the degradation process as a convolution pro-
cess by assuming that the blur is uniform across the entire
image:

Ib = K ∗ Is + θμ , (3)

where K is the blur kernel and θμ represents additive Gaus-
sian noise. In such an image, any object moving with respect
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Fig. 2 Taxonomy of existing deep image deblurring techniques reviewed in this survey

to the camera will look blurred along the direction of relative
motion. When we use Eq. 3 to represent the blur process Eq.
1, θη corresponds to a blur kernel and Gaussian noise, while
Φ corresponds to convolution and sum operator. For camera
shake, motion blur occurs in the static background, while, in
the absence of camera shake, fast moving objects will cause
these objects to be blurred while the background remains
sharp. A blurred image can naturally contain blur caused by
both factors. Early methods model blur using shift-invariant
kernels (Fergus et al. 2006;Xu et al. 2014), whilemore recent
studies address the case of non-uniform blur (Gao et al. 2019;
Kupyn et al. 2018, 2019; Nah et al. 2017; Tao et al. 2018).

Out-of-FocusBlurAside frommotion blur, image sharpness
is also affected by the distance between the scene and the
camera’s focal plane. Points on the focal plane are in true
focus, and points close to it appear in focus, defining the depth
of field. If the scene contains objects outside this region, parts
of the scene will appear blurry. The Point Spread Function
(PSF) for out-of-focus blur Lu (2017) is often modeled as:

K (x, y) =
⎧
⎨

⎩

1

πr2
, if (x − k)2 + (y − l)2 ≤ r2,

0, elsewhere,
(4)

where (k, l) is the center of the PSF and r the radius of the
blur. Out-of-focus deblurring has applications in saliency
detection Jiang et al. (2013), defocus magnification Bae

and Durand (2007) and image refocusing Zhang and Cham
(2009). To address the problem of out-of-focus blur, classic
methods remove blurry artifacts via blur detection Shi et al.
(2014) or coded apertures Masia et al. (2011). Deep neural
networks have been used to detect blur regions (Tang et al.
2019; Zhao et al. 2019) and predict depth Anwar et al. (2017)
to guide the deblurring process.

Gaussian Blur Gaussian convolution is a common simple
blur model used in image processing, defined as

G(x, y) = 1

2πσ 2 e
− x2+y2

2σ2 , (5)

where x and y are the distance from the origin in the horizon-
tal and vertical axis, respectively, σ is the standard deviation.
Several methods have been developed to remove the Gaus-
sian blur (Chen andMa 2009; Hummel et al. 1987; Vairy and
Venkatesh 1995).

Mixed Blur In many real-world scenes multiple factors con-
tribute to blur, such as camera shake, object motion, and
depth variation. For example, when a fast-moving object is
captured at an out-of-focus distance, the image may include
both motion blur and out-of-focus blur as shown in Fig. 1(d).
To synthesize this type of blurry image, one option is to firstly
transform sharp images to theirmotion-blurred versions (e.g.,
by averaging neighboring sharp frames taken in sequence)
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and then apply an out-of-focus blur kernel based on Eq. 4.
Alternatively, one can train a blurringnetwork to directly gen-
erate realistically blurred images (Chen et al. 2018; Zhang et
al. 2020).

In addition to these main types of blur there can be other
causes, such as channel-dependent blur resulting from chro-
matic aberration (Son and Park 2011; Sun et al. 2017).

2.2 Image Quality Assessment

Methods for image quality assessment (IQA) can be clas-
sified into subjective and objective metrics. Subjective
approaches are based on human judgment, which may not
require a reference image. One representative metric is the
Mean Opinion Score (MOS) Hoßfeld et al. (2016), where
people rate the quality of images on a scale of 1-5. As
MOS values depend on the population sample, methods typ-
ically take the statistics of opinion scores into account. For
image deblurring, most existing methods are evaluated on
objective assessment scores, which can be further split into
two categories: full-reference and no-reference IQA met-
rics.

Full-Reference Metrics Full-reference metrics assess the
image quality by comparing the restored image with the
ground-truth (GT). Such metrics include PSNR Hore and
Ziou (2010), SSIM Wang et al. (2004), WSNR Mitsa and
Varkur (1993), MS-SSIMWang et al. (2003), IFC Sheikh et
al. (2005), NQM Damera-Venkata et al. (2000), UIQI Wang
and Bovik (2002), VIF Sheikh and Bovik (2006), and LPIPS
Zhang et al. (2018). Among these, PSNR and SSIM are the
most commonly usedmetrics in image restoration tasks (Gao
et al. 2019; Kupyn et al. 2018, 2019; Nah et al. 2017; Shen
et al. 2019; Suin et al. 2020; Tao et al. 2018; Zhang et al.
2018a, 2020). On the other hand, LPIPS and E-LPIPS are
able to approximate human judgment of image quality (Ket-
tunen et al. 2019; Zhang et al. 2018).

No-Reference Metrics While the full-reference metrics
require a ground-truth image for evaluation, no-reference
metrics use only the deblurred images to measure the quality.
To evaluate the performance of deblurring methods on real-
world images, several no-reference metrics have been used,
such as BIQI Moorthy and Bovik (2010), BLINDS2 Saad et
al. (2012), BRISQUEMittal et al. (2012a), CORNIAYe et al.
(2012), DIIVINEMoorthy andBovik (2011), NIQEMittal et
al. (2012b), and SSEQ Liu et al. (2014). Further, a number of
metrics have been developed to evaluate the performance of
image deblurring algorithms by measuring the effect on the
accuracy of different vision tasks, such as object detection
and recognition (Li et al. 2018; Yasarla et al. 2019).

3 Non-Blind Deblurring

The goal of image deblurring is to recover the latent image
Is from a given blurry one Ib. If the blur kernel is given, the
problem is also known as non-blind deblurring. Even if the
blur kernel is available, the task is challenging due to sensor
noise and the loss of high-frequency information.

Some non-deep methods employ natural image priors,
e.g., global Krishnan and Fergus (2009) and local Zoran and
Weiss (2011) image priors, either in the spatial domain Ren
et al. (2017) or in the frequency domain Kruse et al. (2017)
to reconstruct sharp images. To overcome undesired ring-
ing artifacts, Xu et al. (2014) and Ren et al. (2018) combine
spatial deconvolution and deep neural networks. In addition,
several approaches have been proposed to handle saturated
regions (Cho et al. 2011; Whyte et al. 2014) and to remove
unwanted artifacts caused by image noise (Kheradmand and
Milanfar 2014; Nan et al. 2020).

We summarize existing deep learning based non-blind
methods in Table 1. These approaches can be broadly cat-
egorized into two groups: the first group uses deconvolution
followed by denoising, while the second group directly
employs deep networks.

Deconvolution with Denoising Representative algorithms
in this category include (Ren et al. 2018; Schuler et al.
2013; Xu et al. 2014; Zhang et al. 2017, ?). Schuler et al.
(2013) develop a multi-layer perceptron (MLP) to decon-
volve images. This approach first recovers a sharp image
through a regularized inverse in the Fourier domain, and
then uses a neural network to remove artifacts produced in
the deconvolution process. Xu et al. (2014) use a deep CNN
to deblur images containing outliers. This algorithm applies
singular value decomposition to a blur kernel and draws a
connection between traditional optimization-based schemes
and CNNs. However, the model needs to be retrained for
different blur kernels. Using the low-rank property of the
pseudo-inverse kernel in Xu et al. (2014), Ren et al. (2018)
propose a generalized deep CNN to handle arbitrary blur
kernels in a unified framework without re-training for each
kernel. However, low-rank decompositions of blur kernels
can lead to a drop in performance. Both methods (Ren et
al. 2018; Xu et al. 2014) concatenate a deconvolution CNN
and a denoising CNN to remove blur and noise, respectively.
However, such denoising networks are designed to remove
additive white Gaussian noise and cannot handle outliers or
saturated pixels in blurry images. In addition, these non-blind
deblurring networks need to be trained for a fixed noise level
to achieve good performance, which limits their use in the
general case. Kruse et al. (2017) propose a Fourier Decon-
volution Network (FDN) by unrolling an iterative scheme,
where each stage contains an FFT-based deconvolution mod-
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Table 1 Overview of deep single image non-blind deblurring methods, where “Convolution” denotes convolving sharp images with blur kernels
using Eq. 3 to synthesize training data

Method Category Blur type Dataset Architecture Key idea

DCNN Xu et al.
(2014)

Gaussian, disk First work to combine traditional optimization-based
schemes and neural networks

IRCNN Zhang et
al. (2017)

Gaussian, motion Learn a set of CNN denoisers, use as a modular part
of model-based optimization methods to tackle
inverse problems

FCNN Zhang et
al. (2017)

Motion Adaptively learn image priors to preserve image
details and structure with a robust L1 loss

FDN Kruse et al.
(2017)

Uniform Motion Convolution CNN learn a CNN-based prior with an FFT-based
deconvolution scheme

GLRA Ren et al.
(2018)

Gaussian, disk,
motion

Use generalized low-rank approximations of blur
kernels to initialize the CNN parameters

DUBLID Li et
al. (2019)

Motion Recast a generalized TV-regularized algorithm into a
deep network for blind image deblurring

RGDN Gong et
al. (2020)

Motion Incorporate deep neural networks into a fully
parameterized gradient descent scheme

DWDN Dong et
al. (2020)

Motion,
Gaussian

Apply explicit deconvolution in feature space by
integrating a classical Wiener deconvolution
framework

USRNet Zhang
et al. (2020)

Motion,
Gaussian

End-to-end training of an unfolding network that
integrates advantages of model-based and
learning-based methods

ule and a CNN-based denoiser. Data with multiple noise
levels is synthesized for training, achieving better deblurring
and denoising performance.

The abovemethods learn denoisingmodules for non-blind
image deblurring. Learning denoising modules can be seen
as learning priors, which will be discussed in the following.

Learning Priors for Deconvolution Bigdeli et al. (2017)
learn a mean-shift vector field representing a smoothed ver-
sion of the natural image distribution, and use gradient
descent to minimize the Bayes risk for non-blind deblurring.
Jin et al. (2017) use a Bayesian estimator for simultane-
ously estimating the noise level and removing blur. They
also propose a network (GradNet) to speed up the deblurring
process. In contrast to learning a fixed image prior, Grad-
Net can be integrated with different priors and improves
existing MAP-based deblurring algorithms. Zhang et al.
(2017) train a set of discriminative denoisers and inte-
grate them into a model-based optimization framework to
solve the non-blind deblurring problem. Without outlier
handling, non-blind deblurring approaches tend to generate
ringing artifacts, even in cases when the estimated ker-
nel is accurate. Note that some super-resolution methods
(with a scale factor of 1) can be adopted for the task of
non-blind deblurring as the formulation as image recon-
struction task is very similar, e.g., USRNet Zhang et al.
(2020).

4 Blind Deblurring

In this section, we discuss recent blind deblurring meth-
ods. For blind deblurring, both the latent image and the blur
kernel are unknown. Early blind deblurring methods focus
on removing uniform blur (Cho and Lee 2009; Fergus et
al. 2006; Michaeli and Irani 2014; Schuler et al. 2015; Xu
and Jia 2010). However, real-world images typically contain
non-uniform blur, where different regions in the same image
are generated by different blur kernels Rim et al. (2020).
Numerous approaches have been developed to address non-
uniform blur by modeling the blur kernel from 3D camera
motion (Hirsch et al. 2011; Whyte et al. 2012). Although
these approaches can model out-of-plane camera shake, they
cannot handle dynamic scenes, which motivated the use of
blur fields of moving objects (Chakrabarti et al. 2010; Gast
et al. 2016; Hyun Kim et al. 2013). Motion discontinuities
and occlusions make the accurate estimation of blur kernels
challenging. Recently, several deep learning based methods
have been proposed for the deblurring of dynamic scenes
(Gao et al. 2019; Nah et al. 2017; Tao et al. 2018).

Tables 2 and 3 summarize representative single image
and video deblurring methods, respectively. To analyse these
methods, we first introduce frame aggregation methods for
network input. We then review the basic layers and blocks
used in existing deblurring networks. Finally, we discuss the
architectures, as well as the advantages and limitations of
current methods.
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Table 2 Overview of deep single image blind deblurring methods. In the ‘Dataset’ column ‘averaging’ refers to averaging over temporally
consecutive sharp frames to synthesize training data

Method Category Blur type Dataset Architecture Key idea

Learning-to-
Deblur Schuler
et al. (2015)

Motion Cascade The first stage uses a CNN to estimate blur
kernels and latent images. The second
stage operates on the blurry images and
latent image for kernel estimation.

TextDBN Hradiš
et al. (2015)

Uniform Motion &
defocus

Convolution CNN Trains a CNN for blind deblurring and
denoising.

SelfDeblur Ren
et al. (2019)

Gaussian &
motion

DAE Two generative networks capture the blur
kernel and a latent sharp image,
respectively, which is trained on blurry
images.

MRFCNN Sun et
al. (2015)

Convolution CNN Estimate motion kernels from local
patches via CNN. An MRF model
predicts the motion blur field.

NDEBLUR
Chakrabarti
(2016)

Convolution CNN Train a network to generate the complex
Fourier coefficients of a deconvolution
filter, which is applied to the input patch.

MSCNN Nah et
al. (2017)

Averaging MS-CNN A multi-scale CNN generates a
low-resolution deblurred image and a
deblurred version at the original
resolution.

BIDN Nimisha et
al. (2017)

Convolution DAE The network regresses over
encoder-features to obtain a blur
invariant representation, which is fed
into a decoder to generate the sharp
image.

MBKEN Xu et
al. (2017)

Convolution Cascade A two-stage CNN extracts sharp edges
from blurry images for kernel
estimation.

RNN_Deblur
Zhang et al.
(2018a)

Convolution RNN Deblurring via a spatially variant RNN,
whose weights are learned via a CNN.

SRN Tao et al.
(2018)

Averaging MS-LSTM Deblurring via a scale-recurrent network
that shares network weights across
scales.

DeblurGAN
Kupyn et al.
(2018)

Non-uniform Motion Averaging GAN A conditional GAN-based network
generates realistic deblurred images.

UCSDBN
MadamNimisha
et al. (2018)

Convolution Cycle-GAN An unsupervised GAN performs
class-specific deblurring using unpaired
images as training data.

DMPHN Zhang
et al. (2019)

Convolution DAE A DAE network recovers sharp images
based on different patches.

DeepGyro CNN
Mustaniemi et
al. (2019)

Convolution DAE A motion deblurring CNN makes use of
the camera’s gyroscope readings.

PSS_SRN Gao et
al. (2019)

Averaging MS-LSTM A selective parameter sharing scheme is
applied to the SRN architecture and
ResBlocks are replaced by nested skip
connections.

DR_UCSDBN
Lu et al. (2019)

Convolution Cycle-GAN Unsupervised domain-specific deblurring
method by disentangling the content and
blur features from input images.

Dr-Net
Aljadaany et al.
(2019)

Averaging CNN A network to learn both the image prior
and data fidelity terms via
Douglas-Rachford iterations.
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Table 2 continued

Method Category Blur type Dataset Architecture Key idea

DeblurGAN-v2
Kupyn et al.
(2019)

Averaging GAN An extension of DeblurGAN using a
feature pyramid network and wide range
of backbone networks for better speed
and accuracy.

RADN Purohit
and
Rajagopalan
(2019)

Averaging DAE Region-adaptive dense deformable
module to discover spatially varying
shifts.

DBRBGAN
Zhang et al.
(2020)

Averaging Reblur Two networks, BGAN and DBGAN,
which learn to blur and to deblur,
respectively.

SAPHN Suin et
al. (2020)

Averaging DAE Content-adaptive architecture to remove
spatially-varying image blur.

ASNet Kaufman
and Fattal
(2020)

Convolution DAE DAE framework, which first estimates the
blur kernel in order to recover sharp
images.

EBMD Jiang et
al. (2020)

Averaging DAE An event-based motion deblurring
network, introducing a new dataset,
DAVIS240C.

4.1 Network Inputs and Frame Aggregation

Single image deblurring networks take a single blurry image
as input and generate the corresponding deblurred result.
Video deblurring methods take multiple frames as input and
aggregate the frame information in either the image or fea-
ture domain. Image-level aggregation algorithms, e.g., Su
et al. (2017), stack multiple frames as input and estimate
the deblurred result for the central frame. On the other hand,
feature-level aggregation approaches, e.g., Zhou et al. (2019)
and Hyun Kim et al. (2017), first extract features from the
input frames and then fuse the features for predicting the
deblurred results.

4.2 Basic Layers and Blocks

This section briefly reviews themost common network layers
and blocks used for image deblurring.

ConvolutionalLayerNumerousmethods (Chakrabarti 2016;
Kaufman and Fattal 2020; Schuler et al. 2015; Sun et al.
2015) train 2D CNNs to directly recover sharp images with-
out kernel estimation steps (Aljadaany et al. 2019; Gong et
al. 2017; Lu et al. 2019; Madam Nimisha et al. 2018; Mus-
taniemi et al. 2019; Nimisha et al. 2017; Shen et al. 2019;
Zhang et al. 2019, ?). On the other hand, several approaches
use additional prior information, such as depthLi et al. (2020)
or semantic labels Shen et al. (2018), to guide the deblur-
ring process. In addition, 2D convolutions are also adopted
by all video deblurring methods (Aittala and Durand 2018;
HyunKim et al. 2017;Kim et al. 2018;Nah et al. 2019, ?; Sim

and Kim 2019; Su et al. 2017;Wang et al. 2019;Wieschollek
et al. 2017). The main difference between single image and
video deblurring is 3D convolutions, which can extract fea-
tures from both spatial and temporal domains Zhang et al.
(2018).

Recurrent Layer For single image deblurring, recurrent lay-
ers can extract features across images at multiple scales in a
coarse-to-fine manner. Two representative methods are SRN
Tao et al. (2018) and PSS-SRN Gao et al. (2019). SRN is
a coarse-to-fine architecture to remove motion blur via a
shared-weight deep autoencoder, while PSS-SRN includes a
selective parameter sharing scheme, which leads to improved
performance over SRN.

Recurrent layers can also be used to extract temporal infor-
mation from neighboring frames in videos (Hyun Kim et al.
2017; Lumentut et al. 2019; Nah et al. 2019; Park et al.
2020; Zhong et al. 2020; Zhou et al. 2019). The main dif-
ference from single image deblurring is that the recurrent
layers in video-based methods extract features from neigh-
boring images, rather than transferring information across
only one input image at different scales. These methods can
be categorized into two groups. The first group transfers the
feature maps from the last step to the current network to
obtain finer deblurred frames (Hyun Kim et al. 2017; Nah
et al. 2019). The second type of methods generates sharp
frames via directly inputting deblurred frames from the last
step Zhou et al. (2019).

Residual Layer To avoid vanishing or exploding gradients
during training, the global residual layers are used to directly
connect low-level and high-level layers in the area of image
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deblurring (Kupyn et al. 2018; Nah et al. 2017; Zhang et
al. 2018). One representative method using this architecture
is DeblurGAN Kupyn et al. (2018) where the output of the
deblurring network is added to the input image to estimate
the sharp image. In this case, the architecture is equivalent to
learning global residuals between blurry and sharp images.
The local ResBlock uses local residual layers, similar to the
residual layers in ResNet He et al. (2016), and these are
widely used in image deblurring networks (Gao et al. 2019;
Hyun Kim et al. 2017; Kupyn et al. 2018; Nah et al. 2017;
Nimisha et al. 2017; Tao et al. 2018). Both kinds of residual
layers, local and global, are often combined to achieve better
performance.

DenseLayerUsing dense connections can facilitate address-
ing the gradient vanishing problem, improving feature prop-
agation, and reducing the number of parameters. Purohit and
Rajagopalan (2019) propose a region-adaptive dense network
composed of region adaptive modules to learn the spatially
varying shifts in a blurry image. These region adaptive mod-
ules are incorporated into a densely connected auto-encoder
architecture. Zhang et al. (2020) and Gao et al. (2019) also
apply dense layers to build their deblurring networks inwhich
DenseBlocks are used to replace the CNN layers or Res-
Blocks.

Attention Layer The attention layer can help deep networks
focus on the most important image regions for deblurring.
Shen et al. (2019) propose an attention-based deep deblurring
method consisting of three separate branches to remove blur
from the foreground, the background, and globally, respec-
tively. Since image regions containing people are often of
the most interest, the attention module detects the location of
people to deblur images using the guidance of a human-aware
map. Other methods employ attention to extract better fea-
ture maps, e.g., using self-attention to generate a non-locally
enhanced feature map Purohit and Rajagopalan (2019).

4.3 Network Architectures

Wecategorize themostwidely used network architectures for
image deblurring into five sets: Deep auto-encoders (DAE),
generative adversarial networks (GAN), cascaded networks,
multi-scale networks, and reblurring networks. We discuss
these methods in the following sections.

Deep Auto-Encoders (DAE) A deep auto-encoder first
extracts image features and a decoder reconstructs the image
from these features. For single image deblurring, many
approaches use the U-Net architecture with a residual learn-
ing technique. (Gao et al. 2019; Nimisha et al. 2017; Shen
et al. 2018; Sim and Kim 2019; Tao et al. 2018). In some
cases additional networks help exploiting additional infor-
mation for guiding theU-Net. For example, Shen et al. (2018)

Fig. 3 Deep single image deblurring network based on the Deep Auto-
Encoder (DAE) architecture Nimisha et al. (2017)

propose a face parsing/segmentation network to predict face
labels as priors, and use both, blurry images and predicted
semantic labels, as the input to a U-Net. Other methods
apply multiple U-Nets to obtain better performance. Tao et
al. (2018) analyze different U-Nets as well as DAE, and pro-
pose a scale-recurrent network to process blurry images. The
first U-net obtains coarse deblurred images, which are fed
into another U-Net to obtain the final result. The work in
Shen et al. (2020) combines the two ideas, using a deblur-
ring network to obtain coarse deblurred images, then feeding
them into a face parsing network to generate semantic labels.
Finally, both, coarse deblurred images and labels, are fed into
a U-Net to obtain the final deblurred images.

Video deblurring methods can be split into two groups
based on their input. The first group takes a stack of neigh-
boring blurry frames as input to extract spatio-temporal
information. Su et al. (2017) and Wang et al. (2019) design
DAE architectures to remove blur from videos by feeding
several consecutive frames into the encoder, and the decoder
recovers the sharp central frame. Features extracted from dif-
ferent layers of the encoder are element-wise added to the
correspondingdecoder layers as shown inFig. 4,which accel-
erates convergence andgenerates sharper images. The second
approach is to feed a single blurry frame into an encoder to
extract features. Various modules have been developed to
extract features from neighboring frames, which are jointly
fed into the decoder to recover the deblurred frame Zhou et
al. (2019). The features from neighboring frames can also be
fed into the encoder for feature extraction Hyun Kim et al.
(2017).Numerous deepvideodeblurring algorithmsbasedon
this architecture have been developed (Nah et al. 2019; Sim
and Kim 2019; Wang et al. 2019). The main differences are
in the module for fusing temporal information from neigh-
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Fig. 4 Deep video deblurring network based on the DAE architecture
Su et al. (2017)

Fig. 5 Architecture to extract spatio-temporal information based on the
STFAN model Zhou et al. (2019)

Fig. 6 Architecture to extract spatio-temporal information based on an
RNN model Nah et al. (2019)

boring frames, e.g., STFAN Zhou et al. (2019) in Fig. 5 and
an RNN module Nah et al. (2019) in Fig. 6.

GenerativeAdversarialNetworks (GAN)GANshavebeen
widely used in image deblurring (Kupyn et al. 2018, 2019;
Nah et al. 2017; Shen et al. 2018) in recent years. Most
GAN-based deblurring models share the same strategy: the
generator (Fig. 7) generates sharp images such that the dis-
criminator cannot distinguish them from real sharp images.
Kupyn et al. (2018) proposed DeblurGAN, an end-to-end
conditional GAN for motion deblurring. The generator of
DeblurGAN contains two-strided convolution blocks, nine
residual blocks, and two transposed convolution blocks to
transform a blurry image to its corresponding sharp version.
This method is further extended to DeblurGAN-v2 Kupyn
et al. (2019), which adopts a relativistic conditional GAN
and a double-scale discriminator, which consists of local and
global branches as in Isola et al. (2017). The core block of
the generator is a feature pyramid network, which improves
efficiency and performance. An adversarial loss is employed
by Nah et al. (2017) and Shen et al. (2018) to generate better
deblurred images.

GANs are also used in video deblurring networks. The
main difference to single image deblurring is the generator,
which also considers temporal information from neighboring
frames. A 3DCNN model was developed by Zhang et al.
(2018) to exploit both spatial and temporal information to
restore sharp details using adversarial learning, see Fig. 8.
Kupyn et al. (2019) proposedDeblurGAN-v2 to restore sharp

Fig. 7 Deep single image deblurring network based on the GAN architecture Kupyn et al. (2019)
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Fig. 8 Deep video deblurring network based on the GAN architecture
Zhang et al. (2018)

Fig. 9 Deep network for single image deblurring based on a cascaded
architecture Schuler et al. (2015)

videos via modifying the single image deblurring method of
DeblurGAN.

Cascaded Networks A cascaded network contains several
modules, which are sequentially concatenated to construct
a deeper structure. Cascaded networks can be divided into
two groups. The first one uses different architectures in each
cascade. For example, Schuler et al. (2015) propose a two-
stage cascaded network, see Fig. 9. The input to the first
stage is a blurry image, and the deblurred output is fed
into the second stage to predict blur kernels. The second
group re-trains the same architecture in each cascade to gen-
erate deblurred images. Deblurred images from preceding
stages are fed into the same type of network to generate
finer deblurred results. This cascading scheme can be used
in almost all deblurring networks. Although this strategy
achieves better performance, the number of CNN parameters
increases significantly. To reduce these, recent approaches
share parameters in each cascade Pan et al. (2020).

Multi-Scale Networks Different scales of the input image
describe complementary information (Denton et al. 2015;
Eigen et al. 2014; Xia et al. 2016). The strategy of multi-
scale deblurring networks is to first recover low-resolution
deblurred images and then progressively generate high-
resolution sharp results. Nah et al. (2017) propose a multi-
scale deblurring network to removemotion blur from a single
image (Fig. 10). In a coarse-to-fine scheme, the proposed
network first generates images at 1/4 and 1/2 resolutions
before estimating the deblurred image at the original scale.
Numerous deep deblurring methods use a multi-scale archi-
tecture (Gao et al. 2019; Purohit et al. 2019; Tao et al. 2018),

Fig. 10 Deep network for single image deblurring based on a multi-
scale architecture Nah et al. (2017)

Fig. 11 Deep network for single image deblurring based on a reblurring
architecture Zhang et al. (2020)

improving deblurring at different scales, e.g., using nested
skip connections in Gao et al. (2019), or increasing the con-
nection of networks across different scales, e.g., recurrent
layers in Tao et al. (2018).

Reblurring Networks Reblurring networks can synthesize
additional blurry training images (Bahat et al. 2017; Zhang
et al. 2020). Zhang et al. (2020) propose a framework which
includes a learning-to-blur GAN (BGAN) and a learning-to-
deblur GAN (DBGAN). This approach learns to transform a
sharp image into a blurry version and recover a sharp image
from the blurry version, respectively. Chen et al. (2018) intro-
duce a reblur2deblur framework for video deblurring. Three
consecutive blurry images are fed into the framework to
recover sharp images, which are further used to compute the
optical flow and estimate the blur kernel for reconstructing
the blurry input.

Advantages andDrawbacks ofVariousModelsTheU-Net
architecture has shown to be effective for image deblurring
Shen et al. (2018); Tao et al. (2018) and low-level vision
problems. Alternative backbone architectures for effective
image deblurring include a cascade of Resblocks Kupyn
et al. (2018) or Denseblocks Zhang et al. (2020). After
selecting the backbone, deep models can be improved in
several ways. A multi-scale network Nah et al. (2017)
removes blur at a different scales in a coarse-to-fine fash-
ion, but at increased computational cost Zhang et al. (2019).
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Similarly, cascaded networks Shen et al. (2020) recover
higher-quality deblurred images via multiple deblurring
stages. Deblurred images are forwarded to another net-
work to further improve the quality. The main difference
is that the deblurred images in multi-scale networks are
intermediate results, whereas the output of each deblurring
network in the cascaded architecture can be individually
regarded as final deblurred output. Multi-scale architectures
and cascaded networks can also be combined by treating
the multi-scale networks as a single stage in a cascaded net-
work.

The primary goal of deblurring is to improve the image
quality, which may be measured by reconstruction metrics
such as PSNR and SSIM. However, these metrics are not
always consistent with human visual perception. GANs can
be trained to generate deblurred images, which are deemed
realistic according to a discriminator network (Kupyn et al.
2018, 2019). For inference, only the generator is necessary.
GAN-based models typically perform poorer in terms of dis-
tortion metrics such as PSNR or SSIM.

When the number of training samples is insufficient, a
reblurring network may be used to generate more data (Chen
et al. 2018; Zhang et al. 2020). This architecture consists
of a learn-to-blur and learn-to-deblur module. Any of the
above-discussed deep models can be used to synthesize
more training samples, creating training pairs of original
sharp images and the output from the learn-to-blur model.
Although this network can synthesize an unlimited number
of training samples, it only models those blur effects that
exist in the training samples.

The issue of pixel misalignment is challenging for image
deblurringwithmulti-frame input. Correspondences are con-
structed by computing pixel associations in consecutive
frames using optical flow or geometric transformations. For
example, a pair of noisy and blurry images can be used for
image deblurring and patch correspondences via optical flow
Gu et al. (2021). When applying deep networks, alignment
and deblurring can be handled jointly by providing multiple
images as input and processing them via 3D convolutions
Zhang et al. (2018).

5 Loss Functions

Various loss functions have been proposed to train deep
deblurring networks. The pixel-wise content loss function
has been widely used in the early deep deblurring networks
to measure the reconstruction error. However, pixel loss can-
not accurately measure the quality of deblurred images. This
inspired the development of other loss functions like task-
specific loss and adversarial loss for reconstructing more
realistic results. In this section, we will review these loss
functions.

5.1 Pixel Loss

The pixel loss function computes the pixel-wise difference
between the deblurred image and the ground truth. The two
main variants are the mean absolute error (L1 loss) and the
mean square error (L2 loss), defined as:

Lpix1 = 1

WH

W∑

x=1

H∑

y=1

|Is(x,y) − Idb(x,y)| , (6)

Lpix2 = 1

WH

W∑

x=1

H∑

y=1

(Is(x,y) − Idb(x,y))
2 , (7)

where Is(x,y) and Idb(x,y) are the values of the sharp image
and the deblurred image at location (x, y), respectively. The
pixel loss guides deep deblurring networks to generate sharp
images close to the ground-truth pixel values. Most existing
deep deblurring networks (Chakrabarti 2016;Nah et al. 2017;
Tao et al. 2018; Xu et al. 2017; Zhang et al. 2018a, ?) apply
the L2 loss since it leads to a high PSNR value. Somemodels
are trained to optimize the L1 loss (Nimisha et al. 2017; Xu
et al. 2017; Zhang et al. 2020). However, since the pixel loss
function ignores long-range image structure, models trained
with this loss function tend to generate over-smoothed results
Kupyn et al. (2019).

5.2 Perceptual Loss

Perceptual loss functions Johnson etal (2016) have also been
used to calculate the difference between images. Different
from the pixel loss function, the perceptual loss compares
the difference in high-level feature spaces such as the fea-
tures of deep networks trained for classification, e.g., VGG19
Simonyan and Zisserman (2014). The loss is defined as:

Lper = 1

WHC

√
√
√
√

W∑

x=1

H∑

y=1

C∑

c=1

(Φl
(x,y,c)(Is) − Φl

(x,y,c)(Idb))
2
,

(8)

where Φl
x,y,c(·) are the output features of the classifier net-

work from the l-th layer. C is the number of channels in
the l-th layer. The perceptual loss function compares net-
work features between sharp images and their deblurred
versions, rather than directly matching values of each pixel,
yielding visually pleasing results (Kupyn et al. 2018, 2019;
Madam Nimisha et al. 2018; Zhang et al. 2018, 2020).

5.3 Adversarial Loss

For GAN-based deblurring networks, a generator network
G and a discriminator network D are trained jointly such
that samples generated by G can fool D. The process can
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be modeled as a min-max optimization problem with value
function V (G, D):

min
G

max
D

V (G, D) = EI∼ptrain(I )[log(D(I ))]+
EIb∼pG(Ib)

[
log(1 − D(G(Ib)))

]
,

(9)

where I and Ib represent the sharp and blurry images, respec-
tively. To guide G to generate photo-realistic sharp images,
the adversarial loss function is used:

Ladversarial = log(1 − D(G(Ib))) , (10)

where D(G(Ib)) is the probability that the deblurred image is
real. GAN-based deep deblurringmethods have been applied
to single image and video deblurring (Kupyn et al. 2018,
2019; Nah et al. 2017; Shen et al. 2018; Zhang et al. 2018). In
contrast to the pixel and perceptual loss functions, the adver-
sarial loss directly predicts whether the deblurred images
are similar to real images and leads to photo-realistic sharp
images.

5.4 Relativistic Loss

The relativistic loss is related to the adversarial loss, which
can be formulated as:

D(Is) = σ(C(Is)) → 1,

D(Idb) = D(G(Idb)) = σ(C(G(Idb))) → 0 ,
(11)

where D(·) is the probability that the input is a real image,
C(·) is the feature captured via a discriminator and σ(·) is
the activation function. During the training stage, only the
second part of Eq. 11 updates parameters of the generator G,
while the first part only updates the discriminator.

To train a better generator, the relativistic loss was pro-
posed to calculatewhether a generated image ismore realistic
than the synthesized images Jolicoeur-Martineau (2018).
Based on this loss function, Zhang et al. (2020) replace the
standard adversarial loss with the relativistic loss:

σ(C(Is) − E(C(G(Ib)))) → 1 ,

σ (C(G(Ib)) − E(C(Is))) → 0 ,

(12)

where E(·) denotes the averaging operation over images in
one batch. C(·) is the feature captured via a discriminator
and σ(·) is the activation function. The generator is updated
by the relativistic loss function

LRDBL = −[log(σ (C(Ir ) − E(C(G(Ib)))))

+ log(1 − (σ (G(Ib)) − E(C(Is)))))],
(13)

where Ir denotes a real image. The method provided in
Kupyn et al. (2019) also applies this loss function to improve
the performance of image deblurring.

5.5 Optical Flow Loss

Since the optical flow is able to represent themotion informa-
tion between two neighboring frames, several studies remove
motion blur via estimating optical flow. Gong et al. (2017)
build aCNN to first estimate themotion flow from the blurred
images and then recover the deblurred images based on the
estimated flow field. To obtain pairs of training samples, they
simulate motion flows to generate blurred images. Chen et
al. (2018) introduce a reblur2deblur framework, where three
consecutive blurry images are input to the deblur sub-net.
Then optical flow between the three deblurred images is used
to estimate the blur kernel and reconstruct the input.

Advantages and Drawbacks of Different Loss Functions
Generally, all the above loss functions contribute to the
progress of image deblurring. However, their characteristics
and goals differ. The pixel loss generates deblurred images
which are close to the sharp ones in terms of pixel-wise
measurements. Unfortunately, this typically causes over-
smoothing. The perceptual loss is more consistent with
human perception, while the results still exhibit obvious gaps
with respect to real sharp images. The adversarial loss and
optical flow loss functions aim to generate realistic deblurred
images and model the motion blur, respectively. However,
they cannot effectively improve the values of PSNR/SSIM
or only work on motion blurred images. Multiple loss func-
tions can also be used as a weighted sum, trading off their
different properties.

6 Benchmark Datasets for Image Deblurring

In this section, we introduce public datasets for image deblur-
ring. High-quality datasets should reflect all the different
types of blur in real-world scenarios. We also introduce
domain-specific datasets, e.g., face and text images, applica-
ble for domain-specific deblurring methods. Table 4 presents
an overview of these datasets.

6.1 Image Deblurring Datasets

Levin et al. Dataset To construct an image deblurring
dataset, Levin et al. (2009) mount the camera on a tripod
to capture blur of actual camera shake by locking the Z-axis
rotation handle and allowing motion in X and Y-directions.
A dataset containing 4 sharp images of size 255× 255 and 8
uniform blur kernels is captured using this set-up.
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Table 4 Representative benchmark datasets for evaluating single image, video and domain-specific deblurring algorithms

Dataset Synthetic Real Sharp Images Blurred Images Blur Model Type Train/Test Split

Levin et al. (2009) × � 4 32 Uniform Single image Not divided

Sun and Hays (2012) � × 80 640 Uniform Single image Not divided

Köhler et al. (2012) � × 4 48 Non-uniform Single image Not divided

Lai et al. (2016) � � 108 300 Both Single image Not divided

GoPro Nah et al. (2017) � � 3,214 3,214 Non-uniform Single image 2,103/1,111

HIDE Shen et al. (2019) � × 8,422 8,422 Non-uniform Single image 6,397/2,025

Blur-DVS Jiang et al. (2020) � � 2,178 2,918 Non-uniform Single image 1,782/396

Su et al. (2017) � � 6,708 11,925 Non-uniform Video 5,708/1,000

REDS Nah et al. (2019) � � 30,000 30,000 Non-uniform Video 24,000/3,000

Hradiš et al. (2015) � × 3M+35K 3M+35K Non-uniform Text 3M/35K

Shen et al. (2018) � × 6,564 130M+16K Uniform Face 130M/16K

Zhou et al. (2019) � × 20,637 20,637 Non-uniform Stereo 17,319/3,318

Sun et al. Dataset Sun et al. (2013) extend the dataset of
Levin et al. (2009) byusing 80 high-resolution natural images
from Sun and Hays (2012). Applying the 8 blur kernels from
Levin et al. (2009), this results in 640 blurred images. Similar
to Levin et al. (2009), this dataset contains only uniformly
blurred images and is insufficient for training robust CNN
models.

Köhler et al. Dataset To simulate non-uniform blur, Köhler
et al. (2012) use a Stewart platform (i.e., a robotic arm) to
record the 6D camera motion and capture a printed picture.
There are 4 latent sharp images and 12 camera trajectories,
resulting in a total of 48 non-uniformly blurred images.

Lai et al. Dataset Lai et al. (2016) provide a dataset which
includes 100 real and 200 synthetic blurry images generated
using both uniform blur kernels and 6D camera trajectories.
The images in this dataset cover various scenarios, e.g., out-
door, face, text, and low-light images, and thus can be used
to evaluate deblurring methods in a variety of settings.

GoPro Dataset Nah et al. (2017) created a large-scale
dataset to simulate real-world blur by frame averaging. A
motion blurred image can be generated by integrating mul-
tiple instant and sharp images over a time interval:

Ib = g

(
1

T

∫ T

t=0
Is(t)dt

)

, (14)

where g(·) is the Camera Response Function (CRF), and T
denotes the period of camera exposure. Instead of model-
ing the convolution kernel, M consecutive sharp frames are
averaged to generate a blurry image:

Ib � g

(
1

M

M−1∑

t=0

IS[t]

)

. (15)

Sharp images, captured at 240fps using aGoProHero4Black
camera, are averaged over time windows of varying duration
to synthesize blurry images. The sharp image at the cen-
ter of a time window is used as ground truth image. The
GoPro dataset has beenwidely used to train and evaluate deep
deblurring algorithms. The dataset contains 3, 214 image
pairs, split into training and test sets, containing 2, 103 and
1, 111 pairs, respectively.

HIDE Dataset Focusing mainly on pedestrians and street
scenes, Shen et al. (2019) created a motion blurred dataset,
which includes camera shake and object movement. The
dataset includes 6, 397 and 2, 025 pairs for training and test-
ing, respectively. Similar to the GoPro dataset Nah et al.
(2017), the blurry images in the HIDE dataset are synthe-
sized by averaging 11 continuing frames, where the central
frame is used as the sharp image.

RealBlur Dataset To train and benchmark deep deblurring
methods on real blurry images, Rim et al. (2020) created
the RealBlur dataset, consisting of two subsets. The first is
RealBlur-J, which contains camera JPEG outputs. The sec-
ond is RealBlur-R, which contains RAW images. The RAW
images are generated by using white balance, demosaicking,
and denoising operations. The dataset totally contains 9476
pairs of images.

Blur-DVS Dataset To evaluate the performance of event-
based deblurring methods (Jiang et al. 2020; Lin et al.
2020; Jiang et al. 2020) create a Blur-DVS dataset using
a DAVIS240C camera. An image sequence is first captured
with slow camera motion and used to synthesize 2, 178 pairs
of blurred and sharp images by averaging seven neighboring
frames. Training and test sets contain 1, 782 and 396 pairs,
respectively. The dataset also provides 740 real blurry images
without sharp ground-truth images.
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6.2 Video Deblurring Datasets

DVDdataset Su et al. (2017) capturedblurry video sequences
with cameras on different devices, including an iPhone 5s, a
Nexus 4x, and a GoPro Hero 4. To simulate realistic motion
blur, they captured sharp videos at 240 fps and averaged eight
neighboring frames to create the corresponding blurry videos
at 30fps. The dataset consists of a quantitative subset and a
qualitative subset. The quantitative subset includes 6, 708
blurry images and their corresponding sharp images from 71
videos (61 training videos and 10 test videos). The qualita-
tive subset covers 22 videos with a 3 − 5 second duration,
which are used for visual inspection.

REDSDataset In order to capture the motion of fast moving
objects, Nah et al. (2019) captured 300 video clips at 120
fps and 1080× 1920 resolution using a GoPro Hero 6 Black
camera, and increased the frame rate to 1920 fps by recur-
sively applying frame interpolation Niklaus et al. (2017). By
generating 24 fps blurry videos from the 1920 fps videos,
spike and step artifacts present in the DVD dataset Su et al.
(2017) are reduced. Both the synthesized blurry frames and
the sharp frames are downscaled to 720 × 1280 to suppress
noise and compression artifacts. This dataset has also been
used for evaluating single image deblurring methods Nah et
al. (2020).

6.3 Domain-Specific Datasets

Text Deblurring Datasets Hradiš et al. (2015) collected
text documents from the Internet. These are downsampled to
120−150 DPI resolution, and split into training and test sets
of sizes 50K and 2K, respectively. Small geometric transfor-
mationswith bicubic interpolation are also applied to images.
Finally, 3M and 35K patches are cropped from the 50K and
2K images respectively for training and testing deblurred
models. Motion blur and out-of-focus blur are used to gener-
ate the blurred images from the sharp ones. Cho et al. (2012)
also provide a text deblurring dataset with only limited num-
ber of images available.

Face Deblurring DatasetsBlurred face image datasets have
been constructed from existing face image datasets (Shen et
al. 2018; Xu et al. 2017). Shen et al. (2018) collected images
from the Helen Le et al. (2012) dataset, the CMU PIE Sim et
al. (2002) dataset, and the CelebA Liu et al. (2015) dataset.
They synthesized 20, 000 motion blur kernels to generate
130 million blurry images for training, and used another 80
blur kernels to generate 16,000 images for testing.

Stereo Blur Dataset Stereo cameras are widely used in
fast-moving devices such as aerial vehicles and autonomous
vehicles. In order to study stereo imagedeblurring,Zhou et al.
(2019) used a ZED stereo camera to capture 60 fps videos,

increased to 480 fps via frame interpolation Niklaus et al.
(2017). A varying number of successive sharp images are
averaged to synthesize blurry images. This dataset includes
20,637 pairs of images, which are divided into sets of 17,319
and 3,318 for training and testing, respectively.

7 Performance Evaluation

In this section, we discuss the performance evaluation of
representative deep deblurring methods.

7.1 Single Image Deblurring

We summarize representative methods in Table 5, which
compares the performance on three popular single image
deblurring datasets, the GoPro Nah et al. (2017) dataset,
and the datasets from Köhler et al. (2012) and Shen et al.
(2019). Note that all results are obtained from the respec-
tive papers. For the results of single image deblurring on
the GoPro dataset and the results of video deblurring on the
DVD dataset, we additionally provide bar graphs for easier
comparison, as shown in Fig. 13 and Fig. 16.

The methods developed by Sun et al. (2015), Gong et
al. (2017) and Zhang et al. (2018a) are three early deep
deblurring networks based on CNN and RNN, showing that
deep learning based methods achieve competitive results.
Using coarse-to-fine schemes, Nah et al. (2017), Tao et al.
(2018), and Gao et al. (2019) designed multi-scale networks
and achieved better performance compared to single-scale
deblurring networks as the coarse deblurring networks pro-
vide a better prior for higher resolutions. In addition to the
multi-scale strategy, GANs have been employed to produce
more realistic deblurred images (Kupyn et al. 2018, 2019;
Zhang et al. 2020). However, GAN-based models achieve
poorer results in terms of PSNR and SSIM metrics on the
GoPro dataset Nah et al. (2017) as shown in Table 5. Puro-
hit and Rajagopalan (2019) applied an attention mechanism
to the deblurring network and achieved state-of-the-art per-
formance on the GoPro dataset. The results on Shen et al.’s
dataset Shen et al. (2019) demonstrate the effectiveness. Net-
works using ResBlocks Nah et al. (2017) and DenseBlocks
(Gao et al. 2019; Zhang et al. 2020) also achieve better
performance than previous networks which directly stack
convolutional layers (Gong et al. 2017; Sun et al. 2015).
For non-UHD motion deblurring, the multi-patch architec-
ture has the advantage of restoring images better than the
multi-scale andGAN-based architectures. For other architec-
tures, such asmulti-scale networks, the small-scale version of
images provides less details, and thus these methods cannot
improve the performance significantly.

Figure 12 shows sample results of single image deblur-
ring from the GoPro dataset. We compare two multi-scale
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Fig. 12 Evaluation results of the state-of-the-art deblurringmethods on
the GoPro dataset Nah et al. (2017). From left to right: blurry images,
results of Nah et al. (2017), Tao et al. (2018), DBGAN Zhang et al.
(2020) and DeblurGAN-v2 Kupyn et al. (2019). Nah et al. (2017) and

Tao et al. (2018) are two multi-scale based image deblurring networks.
Zhang et al. (2020) and Kupyn et al. (2019) are two GAN based image
deblurring networks

Fig. 13 Comparison among state-of-the-art image deblurring methods in terms of PSNR on the GoPro dataset

methods (Nah et al. 2017; Tao et al. 2018) and two GAN-
based methods (Kupyn et al. 2019; Zhang et al. 2020) in
the experiments. Despite the differences in model archi-
tectures, all these methods perform well on this dataset.
Meanwhile, methods using similar architectures can yield
different results, e.g., Tao et al. and Nah et al. (2017), which
are based on multi-scale architectures. Tao et al. use recur-
rent operations between different scales and achieve sharper
deblurring results.

We also analyze the performance on the GoPro dataset
using the LPIPS metric. Results of representative methods
are shown in Table 6. Under this metric, Tao et al. (2018)
performs worse than Nah et al. (2017) and Kupyn et al.
(2018). This is because the LPIPS measures the perceptual
similarity rather than the pixel-wise similarity measures like
L1. Specifically, Tao et al. (2018) outperforms the Nah et
al. (2017) and Kupyn et al. (2018) in terms of PSNR and
SSIM on the GoPro dataset. The results show that we may
draw different conclusions when various metrics are used.
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Therefore, it is critical to evaluate deblurring methods using
different quantitativemetrics. As evaluationmetrics optimize
different criteria, the design choice is task-dependent. There
is a perception vs. distortion tradeoff in image reconstruc-
tion tasks, and it has been shown that these two measures
are at odds with each other, see Blau and Michaeli (2018).
To evaluate methods in fairly, one may design a combined
cost function including measures such as PSNR, SSIM, FID,
LPIPS, NIQE, and carry out user studies.

To analyze the effectiveness of different loss functions,
we design a common backbone of several ResBlocks (pro-
videdbyDeblurGAN-v2).Different loss functions, including
L1, L2, perceptual loss, GAN loss, and RaGAN loss Zhang
et al. (2020), and their various combinations are used for
training. Similar to the settings in DeblurGAN-v2 Kupyn
et al. (2019), we train each model for 200 epochs on the
GoPro dataset. The learning rate scheduler corresponds to
that in DeblurGAN-v2. Experimental results are reported
in Table 7. In general, the evaluated models perform better
when combining reconstruction and perceptual loss func-
tions. However, using GAN-based loss functions does not
necessarily improve PSNRor SSIM,which is consistent with
the findings in prior reviews Ledig et al. (2017). In addition,
the same model using GAN loss or RaGAN loss achieves
similar deblurring performance.

In order to evaluate the performance difference between
non-blind and blind single image deblurring methods, we
conduct a study comparing representative non-blind (FDN
Kruse et al. 2017 and RGDN Gong et al. 2020) and blind
single image deblurring methods (Gao et al. 2019; Kupyn et
al. 2019; Nah et al. 2017; Tao et al. 2018; Zhang et al. 2020)
on theRWBIdataset. Considering that theRWBIdataset does
not provide the ground-truth blur kernels, we use Xu et al.
(2013) to estimate blur kernels for non-blind image deblur-
ring. Results are presented in Table 8 using the NIQUE and
BRIQUEmetrics. Overall, the blind deblurring methods out-
perform the non-blind methods since non-blind approaches
require explicitly estimating the blur kernel. In practice, esti-
mating the blur kernel is still a challenging task. If a kernel is
not well estimated, it will negatively affect the image restau-
ration task. Figure 14 shows sample results from the RWBI
dataset.

To analyze the performance gap between blind and non-
blind deblurring methods, we synthesize a new dataset with
ground-truth blur kernels. Specifically, we use the blur ker-
nels applied in Zhang et al. (2020) (including 4 isotropic
Gaussian kernels, 4 anisotropicGaussian kernels fromZhang
et al. (2018), and 4motion blur kernels fromBoracchi andFoi
2012; Levin et al. 2009) to generate blurry images based on
the sharp images from the GoPro dataset Nah et al. (2017).
The generation method is based on Eq. 3 using Gaussian
noise. The blur kernels and blurry images are the input to non-
blind image deblurring methods (DWDN Dong et al. (2020)

Table 6 Performance of
representative single deblurring
methods using the LPIPS metric
on the GoPro dataset

Method LPIPS

Nah et al. (2017) 0.1819

Kupyn et al. (2019) 0.2528

Tao et al. (2018) 0.7879

Gao et al. (2019) 0.0359

Zhang et al. (2020) 0.1097

Table 7 Performance evaluation of different loss functions for single
image deblurring

Method PSNR SSIM

L1 26.24 0.9012

L2 26.78 0.9024

L1 + Perceptual 26.92 0.9078

L2 + Perceptual 26.95 0.9081

L1 + Perceptual + GAN 26.89 0.9060

L2 + Perceptual + GAN 27.20 0.9114

L1 + Perceptual + RaGAN 27.19 0.9111

L2 + Perceptual + RaGAN 27.09 0.9088

Table 8 TheNIQEandBRISQUEof representative non-blind andblind
methods for single image deblurring on theRWBIdataset.Weuse public
available pre-trained models

Method NIQUE BRISQUE

FDN Kruse et al. (2017) 12.4276 57.7418

RGDN Gong et al. (2020) 13.0038 51.5109

Nah et al. (2017) 12.2365 49.9521

Kupyn et al. (2019) 11.8186 40.4656

Tao et al. (2018) 12.4606 51.1515

Gao et al. (2019) 12.3987 50.5300

Zhang et al. (2020) 11.5048 45.5496

and USRNet Zhang et al. (2020)), while the input to blind
image deblurring methods (MSCNN Nah et al. (2017) and
SRN Tao et al. (2018)) are only blurry images. Table 9 and
Fig. 15 showquantitative and qualitative results, respectively.
Overall, non-blind image deblurring methods can achieve
better performance than blind image deblurring approaches
if the ground-truth blur kernels are provided.

For a better understanding of the role of different training
datasets, we train the SRN model Tao et al. (2018) on three
different public datasets (RealBlur-J Rim et al. 2020, GoPro
Nah et al. 2017, and BSD-B Martin et al. 2001; Rim et al.
2020) separately. In addition, we also train the SRN model
on the combinations of “RealBlur-J + GoPro”, “RealBlur-J
+ BSD-B”, and “RealBlur-J + BSD-B + GoPro”. Results are
reported in Table 13. The models using diverse data perform
better than those only using one type of training data. In
particular, the model using the combination of three datasets
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Fig. 14 Comparison among state-of-the-art non-blind and blind image
deblurring methods. The blur kernels are predicted by the method in Xu
et al. (2013). From left to right: blurry images, results of FDN Kruse
et al. (2017), RGDN Gong et al. (2020), SRN Tao et al. (2018) and

DBGAN Zhang et al. (2020). FDN Kruse et al. (2017) and RGDN
Gong et al. (2020) are non-blind deblurring methods, whereas SRN
Tao et al. (2018) and DBGAN Zhang et al. (2020) are blind deblurring
methods

Fig. 15 Comparison among state-of-the-art non-blind and blind image
deblurring methods. The ground-truth blur kernels are provided. From
left to right: blurry images, results of MSCNN Nah et al. (2017),
DeblurGAN-v2 Kupyn et al. (2019), DWDN Dong et al. (2020)

and USRNet Zhang et al. (2020). MSCNN Nah et al. (2017) and
DeblurGAN-v2 Kupyn et al. (2019) are blind image deblurring meth-
ods. DWDN Dong et al. (2020) and USRNet Zhang et al. (2020) are
non-blind methods
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Fig. 16 Comparison among state-of-the-art video deblurring methods in terms of PSNR on the DVD dataset

Table 9 The PSNR and SSIM values of representative non-blind and
blind deblur methods for single image deblurring on the non-blind
GoPro dataset. All methods are trained on the non-blind dataset

Method type PSNR SSIM

DWDN Dong et al. (2020) Non-blind 36.42 0.9762

USRNet Zhang et al. (2020) Non-blind 36.51 0.9823

Nah et al. (2017) blind 33.88 0.9795

SRN Tao et al. (2018) blind 34.78 0.9812

Table 10 Speed of representative methods for single image deblurring.
The numbers are quoted from Suin et al. (2020)

Method Speed (s)

Nah et al. (2017) 6

Kupyn et al. (2018) 1

Tao et al. (2018) 1.2

Zhang et al. (2018a) 1

Gao et al. (2019) 1

Kupyn et al. (2019) 0.48

Suin et al. (2020) 0.34

achieves the highest PSNRandSSIMvalues on theRealBlur-
J testing dataset.

Considering that modern mobile devices allow capturing
ultra-high-definition (UHD) images, we synthesize a new
dataset to study the performance of different architectures
on UHD image deblurring. We use a Sony RX10 camera to
capture 500 and 100 sharp imageswith 4K resolution as train-
ing and testing sets, respectively. Next, we use 3D camera
trajectories to generate blur kernels and synthesize corre-
sponding blurry images by convolving sharp images with
large blur kernels (sizes 111 × 111, 131 × 131, 151 × 151,
171 × 171, 191 × 191). We use two multi-scale networks
(MSCNN, SRN), two GAN-based networks (DeblurGAN,

DeblurGAN-v2) and one multi-patch networks (DMPHN)
for experiments. Table 14 shows the results of these represen-
tative deblurring methods. The results show that UHD image
deblurring is a more challenging task and multi-scale archi-
tectures achieve better performance in terms of PSNR and
SSIM. ForUHDmotion deblurring,multi-scale architectures
achieve better performance. As UHD images have higher
resolution, downsampled versions at 1/4 scale still contain
sufficient detail. Multi-scale architectures take UHD blurry
images at 1/4 of the original resolution as input and gen-
erate the corresponding sharp versions. During the training
stage, the images with 1/4 resolution can provide additional
information for training and thus improve the performance
of deblurring networks.

In order to analyze the performance of different architec-
tures on defocus deblurring, we create another dataset and
conduct numerous experiments. Specifically, we use a Sony
RX10 camera to capture 500 pairs of sharp and blurry images
for training, and 100 pairs of sharp and blurry images for test-
ing. The image resolution is 900×600 pixels. Similarly, two
multi-scale networks (MSCNN, SRN), two GAN-based net-
works (DeblurGAN, DeblurGAN-v2) and one multi-patch
network (DMPHN) are evaluated on this dataset. Table 15
shows the results of the above methods. Compared with
averaging-based motion deblurring, GAN-based architec-
tures can achieve better performance on defocus deblurring.
Multi-scale andmulti-patch architectures do not show signif-
icant improvements in terms of PSNRandSSIM. For defocus
deblurring, results show that these two networks (with and
without GAN framework) do not show significant differ-
ences in terms of PSNR and SSIM. However, for motion
deblurring, GAN-based architectures yield lower PSNR and
SSIM values. This may be attributed to the fact that GAN-
based architectures paying attention to whole images using
the adversarial loss function. In comparison, methods with-
out GANs consider the pixel-level error (L1, L2), and thus
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Table 12 Speed of representative methods for deep video deblurring.
The numbers are quoted from Nah et al. (2019)

Method Speed (fps)

Su et al. (2017) 1.72

Hyun Kim et al. (2017) 9.24

Nah et al. (2019) 28.8

Table 13 Performance evaluation of different training sets (Martin et
al. 2001; Nah et al. 2017; Rim et al. 2020). The image deblurring model
is Tao et al. (2018), and the test set is from RealBlur-J dataset Rim et
al. (2020). The values are reported in Rim et al. (2020)

Training set PSNR SSIM

RealBlur-J 31.02 0.8987

GoPro 28.56 0.8674

BSD-B 28.68 0.8675

RealBlur-J + GoPro 31.21 0.9018

RealBlur-J + BSD-B 31.30 0.9058

RealBlur-J + BSD-B + GoPro 31.37 0.9063

Table 14 Performance evaluation of representative methods for UHD
image deblurring

Method PSNR SSIM

DeepDeblur Nah et al. (2017) 21.12 0.6226

DeblurGAN Kupyn et al. (2018) 19.25 0.5477

SRN Tao et al. (2018) 21.25 0.6233

DeblurGAN-v2 Kupyn et al. (2019) 19.99 0.5865

DMPHN Zhang et al. (2019) 20.98 0.6217

ignore the whole image. We provide a run-time comparison
of representative methods in Table 10.

7.2 Video Deblurring

In this section, we compare recent video deblurring
approaches on twowidely used video deblurring datasets, the
DVD Su et al. (2017) and REDS Nah et al. (2019) datasets,
see Table 11. Deep auto-encoders Su et al. (2017) are the
most commonly used architecture for deep video deblurring
methods. Similar to single image deblurring methods, the
convolutional layer and ResBlocks He et al. (2016) are the
most important components. The recurrent structure Kim et
al. (2018) is used to extract temporal information from neigh-
boring blurry images, which is the main difference to single
image deblurring networks.

Pixel-wise loss functions are employed in most video
deblurring methods, but, similar to single image deblurring,
perceptual loss Zhou et al. (2019) and adversarial loss Zhang
et al. (2018) have also been used.

Table 15 Performance evaluation of representive methods for defocus
deblurring

Method PSNR SSIM

DeepDeblur Nah et al. (2017) 19.78 0.7107

DeblurGAN Kupyn et al. (2018) 19.12 0.6263

SRN Tao et al. (2018) 20.45 0.7557

DeblurGAN-v2 Kupyn et al. (2019) 20.02 0.6896

DMPHN Zhang et al. (2019) 20.12 0.7467

While single image deblurring methods can be applied
to videos, they are outperformed by video-based methods
that exploit temporal information. Su et al. (2017) develop
a blurry video dataset (DVD) and introduce a CNN-based
video deblurring network, which outperforms non-deep
learning based video deblurring approaches. By using intra-
frame iterations, the RNN-based video deblurring network
by Nah et al. (2019) achieves better performance than Su et
al. (2017). Zhou et al. (2019) proposed the STFAN module,
which better incorporates information frompreceding frames
into the deblurring process of the current frame. In addition,
a filter adaptive convolutional (FAC) layer is employed for
aligning the deblurred features from these frames. Pan et
al. (2020) achieve state-of-the-art performance on the DVD
dataset by using a cascaded network and PWC-Net to esti-
mate optical flow for calculating sharpness priors Sun et al.
(2018). A DAE network uses the priors and blurry images to
estimate sharp images. Run times of representative methods
are shown in Table 12.

8 Domain-Specific Deblurring

While most deep learning based methods are designed for
deblurring generic images, i.e. common natural and man-
made scenes, some methods have studied the deblurring
problem in specific domains or settings, e.g., faces and texts.

8.1 Face Image Deblurring

Early face image deblurring methods used key structures of
facial images (Hacohen et al. 2013; Pan et al. 2014).Recently,
deep learning solutions have dominated the development of
face deblurring by exploiting specific facial characteristics
(Jin et al. 2018; Ren et al. 2019; Shen et al. 2018; Xu et al.
2017). Shen et al. (2018) use semantic information to guide
the process of face deblurring. Pixel-wise semantic labels
are extracted via a parsing network and serve as priors to the
deblurring network to restore sharp faces. Jin et al. (2018)
develop an end-to-end network with a resampling convolu-
tion operation to widen the receptive field. Chrysos et al.
(2019) propose a two-step architecture, which first restores
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Fig. 17 Face deblurring examples. From left to right: input images,
results obtained by the methods in Xu et al. (2013), Pan et al. (2014),
Nah et al. (2017) and Shen et al. (2018), respectively

the low frequencies and then restores the high frequencies
to ensure the outputs lie on the natural image manifold. To
address the task of face video deblurring, Ren et al. (2019)
explore 3D facial priors. A deep 3D face reconstruction net-
work generates a textured 3D face for the blurry input, and
a face deblurring branch recovers the sharp face under the
guidance of the posed-aligned face. Figure 17 shows deblur-
ring results from two non-deep methods (Pan et al. 2014; Xu
et al. 2013) and two deep learning based methods (Nah et al.
2017; Shen et al. 2018).

8.2 Text Image Deblurring

Blurred text images impact the performance of optical char-
acter recognition (OCR), e.g., when reading documents,
displays, or street signs. Generic image deblurring methods
are not well suited for text images. In early work Panci et al.
(2003) model the text image as a random field to remove blur
via blind deconvolution algorithms Fiori et al. (1999). Pan
et al. (2014) deblur text images via an L0-regularized prior
based on intensity and gradient. More recently, deep learning
methods, e.g. the method by Hradiš et al. (2015) have shown
to effectively remove out-of-focus and motion blur. Xu et al.
(2017) adopt aGAN-basedmodel to learn a category-specific
prior for the task, designing a multi-class GAN model and a
novel loss function for both face and text images. Figure 18
shows the deblurring results from several non-deep methods
(Chen et al. 2011; Cho et al. 2012; Cho and Lee 2009; Pan et
al. 2014; Xu and Jia 2010; Xu et al. 2013; Zhong et al. 2013)
and the deep learning based method in Hradiš et al. (2015),
showing that Hradiš et al. (2015) achieves better deblurring
results on text images.

8.3 Stereo Image Deblurring

Stereo vision has been widely used to achieve depth per-
ception Godard et al. (2017) and 3D scene understanding
Eslami et al. (2016). When mounting a stereo camera on
a moving platform, vibration will lead to blur, negatively
affecting the subsequent stereo computation Sellent et al.

Fig. 18 Text deblurring examples. (From left to right, top to bottom)
input image, results from Xu and Jia (2010) Xu et al. (2013), Cho and
Lee (2009), Zhong et al. (2013), Chen et al. (2011), Cho et al. (2012),
Pan et al. (2014) and Hradiš et al. (2015), respectively

Fig. 19 Stereo image deblurring exampleZhou et al. (2019). Two stereo
blurry images are fed into deep deblurring networks to generate their
corresponding sharp images

(2016). To alleviate this issue, Zhou et al. (2019) proposed a
deep stereo deblurringmethod tomake use of depth informa-
tion, and varying information in corresponding pixels across
two stereo images.

Depth information helps estimate the spatially-varying
blur as it provides prior knowledge that nearer points are
more blurry than farther points, in the case of translational
motion, which is a common real-world scenario. Further, the
blur of corresponding pixels in two stereo images is different,
which allows using the sharper pixel in the final deblurred
images. In addition to the above tasks, other domain-specific
deblurring tasks include extracting a video sequence from
a single blurred image (Jin et al. 2018; Purohit et al. 2019),
synthesizing high-frame-rate sharp frames Shen et al. (2020),
and joint deblurring and super-resolution Zhang et al. (2018).

9 Challenges and Opportunities

Despite the significant progress of image deblurring algo-
rithms on benchmark datasets, recovering clear images from
a real-world blurry input remains challenging (Nah et al.
2017; Su et al. 2017). In this section, we summarize key
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limitations and discuss possible approaches and research
opportunities.

Real-World Data There are three main reasons that deblur-
ring algorithms do not perform well on real-world images.

First, most deep learning based methods require paired
blurry and sharp images for training, where the blurry inputs
are artificially synthesized. However, there is still a gap
between these synthetic images and real-world blurry images
as the blur models (e.g., Eq. 3 and 15) are oversimplified
(Brooks and Barron 2019; Chen et al. 2018; Zhang et al.
2020). Models trained on synthetic blur achieve excellent
performance on synthetic test samples, but tend to perform
worse on real-world images. One feasible approach to obtain
better training samples is to build better imaging systems
Rim et al. (2020), e.g., by capturing the scenes using different
exposure times. Another option is to develop more realistic
blur models that can synthesize more realistic training data.

Second, real-world images are not only corrupted due to
blur artifacts, but also due to quantization, sensor noise, and
other factors like low-resolution (Shen et al. 2018; Zhang
et al. 2018). One way to address this problem is to develop
a unified image restoration model to recover high-quality
images from the inputs corrupted by various nuisance factors.

Third, deblurring models trained on general images may
perform poorly on images from domains that have differ-
ent characteristics. Specifically, it is challenging for general
methods to recover sharp images of faces or text while main-
taining the identity of a particular person or characters in the
text, respectively.

Loss Functions While numerous loss functions have been
developed in the literature, it is not clear how to use the right
formulation for a specific scenario. For example, as Table 7
shows that an image deblurring model trained with L1 loss
may achieve better performance than models trained with
L2 loss on the GoPro dataset. However, the same network
trained with L1 and perceptual loss functions is worse than
the models trained with L2 and perceptual loss functions.

Evaluation Metrics The most widely used evaluation met-
rics for image deblurring are PSNR and SSIM. However, the
PSNRmetric is closely related to theMSE loss, which favors
over-smoothed predictions. Therefore, these metrics can-
not accurately reflect perceptual quality. Images with lower
PSNR and SSIM values can have better visual quality Ledig
et al. (2017). The Mean Opinion Score (MOS) is an effec-
tivemeasure of perceptual quality.However, thismetric is not
universal and cannot be easily reproduced as it requires a user
study. Therefore, it is still challenging to derive evaluation
metrics that are consistent with the human visual response.

Data and Models Both data and models play important
roles in obtaining favorable deblurring results. In the train-

ing stage, high-quality data is important to construct a strong
image deblurring model. However, it is difficult to collect
large-scale high-quality datasets with ground-truth. Usually,
it requires using to use two cameras (with proper configu-
rations) to capture real pairs of training samples, and thus
the amount of these high-quality data is small with small
diversity. While it is easier to generate a dataset with syn-
thesized images, deblurring models developed based on such
data usually performworse than those built upon high-quality
real-world samples. Therefore, constructing a large number
of high-quality datasets is an important and challenging task.
In addition, high-quality datasets should contain diverse sce-
narios, in terms of types of objects,motion, scenes, and image
resolution. Deblurring network models have been mainly
designed based on empirical knowledge.Recent neural archi-
tecture search methods, such as AutoML (Liu et al. 2018;
Pham et al. 2018; Zoph and Le 2017), may also be applied
to the deblurring task. In addition, transformers Vaswani et
al. (2017) have achieved great success in various computer
vision tasks. How to design more powerful backbones using
Transformer may be an opportunity.

Computational Cost Since many current mobile devices
support capturing 4K UHD images and videos, we test sev-
eral state-of-the-art deep learning based deblurring methods.
However, we found that most these deep learning based
deblurring methods cannot handle 4K resolution images at
high speed. For example, on a single NVIDIA Tesla V100
GPU, Tao et al. (2018), Nah et al. (2017) and Zhang et
al. (2020) take approximately 26.76, 28.41, 31.62 seconds,
respectively, to generate a 4K deblurred image. Therefore,
efficiently restoring high-quality UHD images remains an
open research topic. Note that most existing deblurring net-
works are evaluated on desktops or servers equipped with
high-end GPUs. However, it requires significant effort to
develop efficient deblurring algorithms directly on mobile
devices. One recent example is the work by Kupyn et al.
(2019), which proposes a MobileNet-based model for more
efficient deblurring.

Unpaired Learning Current deep deblurring methods rely
on pairs of sharp images and their blurry counterparts.
However, synthetically blurred images do not represent the
range of real-world blur. To make use of unpaired exam-
ple images, Lu et al. (2019) and Madam Nimisha et al.
(2018) recently proposed two unsupervised domain-specific
deblurring models. Further improving semi-supervised or
unsupervised methods to learn deblurring models appears
to be a promising research direction.
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