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ABSTRACT
This paper proposes a method, Dense ByNet, for single im-
age super-resolution based on a convolutional neural network
(CNN). The main innovation is a new architecture that com-
bines several CNN design choices. Using a residual network
as a basis, it introduces dense connections inside residual
blocks, significantly reducing the number of parameters. Sec-
ond, we apply dilation convolutions to increase the spatial
context. Lastly, we propose modifications to the activation
and cost functions. We evaluate the method on benchmark
datasets and show that it achieves state-of-the-art results over
multiple upscaling factors in terms of peak SNR and struc-
tural similarity (SSIM).

Index Terms— image super resolution, convolutional
neural networks, dense convolutional network, image en-
hancement

1 Introduction
The goal of single image super-resolution is to learn a map-
ping between a low-resolution (LR) and a high-resolution
(HR) image. Methods including self-similarity [1, 2], sparse
coding [3, 4], and neighborhood embedding [5, 6] have been
applied to learn the nonlinear mapping. More recently, con-
volutional neural networks (CNN) have been applied to the
super-resolution task, leading to better performance owing to
their outstanding ability to learn highly nonlinear functions.
CNNs directly learn an end-to-end mapping between low and
high-resolution images. The first Super Resolution CNN (SR-
CNN) [7], introduced an architecture consisting of only two
stacked convolution and activation layers. The convolution
layer acts as a sparse coding dictionary and learns the best
features during training. Various network architectures have
been proposed since, and this paper introduces a new CNN,
Dense ByNet, based on modern residual networks [8], that
combines several components, including dense blocks, di-
lated convolutions, and updated activation and cost functions.
In an ablative study we evaluate the contribution of each com-
ponent. In combination these components lead to increased
PSRN and SSIM performance compared to ByNet [9] and
LapSRN [10], reduce the number of parameters, and are easy
to implement.

Fig. 1: Example result. Visual comparison for ×4 SR on an exam-
ple from the BSD100 [11] dataset. Regions in green boxes highlight
improved recovery of detail.

2 Prior work

Given the success of CNNs applied to the super-resolution
task, prior work has explored various modifications.

Network architectures. Deep recursive convolutional net-
works, which better preserve image context were proposed
in [12]. In [13] a 20-layer network, VDSR, was introduced
to learn the residual image of LR and HR images. The
ByNet architecture [9] uses two types of bypass connec-
tions, standard skip connections to jump multiple layers, and
skip-connections with an additional convolution. It achieved
improved performance over VDSR and is used as baseline
model in our comparisons. Laplacian pyramid networks
(LapSRN) that progressively predict high-frequency residual
were proposed in [10]. It shows good reconstruction perfor-
mance, but due to its deconvolution operation it has been ap-
plied to even scale factors only.

Convolution layers. The Sub-Pixel CNN in [14], intro-
duced a sub-pixel convolution layer to substitute the decon-
volution layer for up-sampling. Another concept that has
been widely applied in CNNs is that of dilated convolu-
tions [15, 16], which increases the size of receptive fields,
thereby better taking spatial context into account. Dilated
convolutions have been adopted to the super-resolution task
in [17, 18], leading to good performance, particularly for large
upscaling factors.



Generative adversarial networks. Methods based on Gen-
erative adversarial networks (GAN), such as SRGAN [19]
and DeblurGAN [20] aim to increase the perceptual score of
the reconstructions. The resulting images introduce realism
by producing a high-resolution image that is close to the dis-
tribution of natural images. This leads to perceptually better
results, in particular for large upscaling factors, but results in
lower PSNR scores.

Dense connections. DenseNet [10] introduced densely con-
nected layers, where feature maps are channel-wise concate-
nated instead of element-wise summed. Features from all
preceding layers are input into subsequent layers. DenseNet
significantly reduces the total number of parameters by en-
couraging feature reuse throughout the network. It showed
good performance on the ImageNet classification task. Dense
skip connection networks were applied to the super-resolution
task in [21]. The network applies densely connected layers,
but concatenates all preceding layer outputs, resulting in large
output feature channels. It also does not support multiple up-
scaling factors.

This paper combines dense connection block with a by-
pass residual network, such as the one proposed in [9]. The
key modification is replacing the convolutions in the resid-
ual bypass connections with convolutional blocks with dense
connections. The resulting architecture is shown to improve
performance over ByNet, while making use of the parameter
reduction effect of DenseNet.

3 Dense ByNet

The base architecture of Dense ByNet follows that of the
ByNet5 model [9]. ByNet5 has one input convolution layer,
five residual blocks (two bypass convolutional connection
blocks and three bypass skip connection blocks), one output
convolution layer, one scaling layer, and one element-wise
sum layer. The network is composed of 19 convolution and
ReLU layers in total. It takes a gray-scale image X as input,
obtained from the LR image via bicubic interpolation. During
training ground truth HR image, Y is provided. The network
outputs Ŷ with Ŷ = X + R̂, where R̂ is the residual image.

3.1 Residual dense blocks
The original convolution layers in the residual blocks feed in-
put features into a convolutional layer with a 3× 3 filter with
64 channels. Thus, each layer has a total of 3×3×64×64 =
36, 864 parameters. We modify the base network by re-
placing the convolutional layer in the residual blocks with a
dense connection block, forming a residual dense block, see
Fig. 2(c). Each dense connection block is composed of n con-
volutional layers (n = 4 in our case). Given the input feature
vectorX

t
, the output y of a dense connection block is defined
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Fig. 2: Residual dense blocks used in Dense ByNet: (a) feature
bypass with dense skip connection (b) feature bypass with dense con-
volutional connection (c) dense connection block.

Table 1: Number of parameters in a dense connection block.
layer kernel plane-in plane-out #params

Dense Conv0 3x3 64 16 9,216
Dense Conv1 3x3 16 16 2,304
Dense Conv2 3x3 32 16 4,608
Dense Conv3 3x3 48 16 6,912

Total 23,040

as:

y = f
([
ht(Xt), ht+1(Xt+1), ..., ht+n−1(Xt+n−1)

])
, (1)

where

Xt+1 = f (ht(Xt)) , (2)

Xt+n = f
([
ht(Xt), ..., ht+n−1(Xt+n−1)

])
, (3)

with activation function f , and

h
t
(X

t
) = w

t
∗X

t
. (4)

The two types of residual dense blocks are shown in
Fig. 2(a) and (b). The input and output dimensions of the
residual blocks remain unchanged with respec to ByNet. The
total number of network parameters is reduced from approxi-
mately 37K to 23K, see Table 1.

Figure 3 shows the complete Dense-ByNet5 architecture.
Analogous to ByNet5, it contains three dense skip connec-
tion blocks and two dense convolutional connection blocks.
Compared to ByNet, dense connection blocks enables effi-
cient reuse of features via channel-wise concatenation.



Fig. 3: Network architecture of Dense ByNet5. The proposed CNN learns the non-linear mapping between LR/HR images. The key
elements of the architecture are two types of residual dense blocks, which are alternated in sequence.

Dilated convolutions. In order to better take advantage of
spatial context we apply a 2-dilated convolution to every con-
volutional layer in the dense bypass blocks. This allows the
features to be computed over receptive fields of multiple sizes.
Note that the receptive field size of 2-dilated 3 × 3 convolu-
tions is the same as 5×5 convolutions, without any additional
parameters.

Activation function. Replacing the residual blocks with
dense connection blocks increases the number of convolution
and attached activation function layers. One issue in learning
the residual image for image super-resolution is that many
values will be close to zero. The increased number of acti-
vation functions exacerbates the vanishing gradient problem,
particularly for dense connections. To address this issue, we
replace the rectified linear unit (ReLU) activation functions to
parametric ReLU (PReLU) [22], which is able to adaptively
learns the parameters of the rectifiers.

Loss function A common loss function for image super-
resolution is the mean squared error (MSE) [7, 9, 13]. It was
previously pointed out [19] that MSE leads to reduced high
frequency components, resulting in perceptually unsatisfying
solutions with overly smooth textures. This has previously
been addressed by using adversarial [24] or perceptual loss
functions [25]. However, these loss functions tend to reduce
PSNR and SSIM performance, which we aim to increase.
Here we use the Charbonnier loss function [26], which has
been suggested for use in image restoration tasks in [23]. The
loss lC can be considered a differentiable version of the L1

norm, which is a robust convex function:

lC(Ŷ , Y ) =
(
(Ŷ − Y )2 + ε2

) 1
2

, (5)

where we set the constant ε to 10−3. Compared to the MSE
loss, this function penalizes outliers less, and is therefore bet-
ter suited for textured image regions.

4 Results
In this section, we first introduce the datasets and implemen-
tation details in order to make the results reproducible. We

then compare the proposed method with several recent super-
resolution methods. Finally, we present an ablative study to
quanitfy the contributions of the different components.

4.1 Datasets

Training data: The training dataset is a combination of
the 91 images from the dataset of Yang et al. [27] and the
200 images from the BSD dataset [28], so that in total of
291 images are used for training. This is in line with prior
work [9, 11, 13, 29]. Data augmentation includes mirror-
ing, rotating, and scaling. All training images are partitioned
into non-overlapping 41 × 41 patches, which is consistent
with [9, 13].

Test data: We evaluate on three public datasets used in
prior work [7, 13], Set5 [5], Set14 [4], and BSD100 [11].
To generate HR/LR image pairs, all HR images are down-
sampled using bicubic interpolation with scale factors of 2, 3,
and 4, and then up-sampled to obtain pairs of the same size.

4.2 Implementation details

We use Xavier initializion [30] and train the network using
mini-batches of size 256. Training is conducted for 40 epochs
using stochastic gradient descent with standard momentum of
0.9. The learning rate is initially set to 0.1 and is step-wise an-
nealed using division by 10 every tenth epoch. The parameter
for the final feature scaling layer is initialized to 0.1. Fol-
lowing [9, 13], gradient clipping with a threshold value 0.5 is
used to avoid the exploding gradient problem. Dense ByNet
is implemented in PyTorch and trained on two Nvidia Quadro
M6000 GPUs.

4.3 Benchmark comparisons

We re-implemented VDSR [13], LapSRN [23], and
ByNet [9]1, and compare the results with our proposed
Dense ByNet on the same training and test sets under same
conditions. Multi-scale training is applied in VDSR [13],
ByNet [9], and Dense ByNet, which means that the input and

1The code for VDSR and LapSRN is publicly available [31].



Table 2: Performance comparison on benchmark datasets: PSNR and SSIM are averaged over all images for each scale. The proposed
Dense ByNet model consistently achieves the best PSNR and SSIM results.

Dataset Scale Bicubic
PSNR

VDSR[13]
PSNR

LapSRN[23]
PSNR

ByNet5[9]
PSNR

Dense ByNet5
PSNR

Dense ByNet7
PSNR

Bicubic
SSIM

VDSR[13]
SSIM

LapSRN[23]
SSIM

ByNet5[9]
SSIM

Dense ByNet5
SSIM

Dense ByNet7
SSIM

Set5
×2
×3
×4

33.66
30.39
28.42

37.53
33.66
31.35

37.48
-

31.65

37.61
33.79
31.44

37.70
34.03
31.66

37.76
34.09
31.74

0.9299
0.8682
0.8104

0.9587
0.9213
0.8838

0.9591
-

0.8889

0.9597
0.9235
0.8860

0.9600
0.9254
0.8891

0.9605
0.9261
0.8902

Set14
×2
×3
×4

30.24
27.55
26.00

33.13
29.92
28.20

33.08
-

28.26

33.20
29.95
28.18

33.25
30.04
28.27

33.34
30.07
28.29

0.9056
0.8188
0.7491

0.9124
0.8314
0.7674

0.9127
-

0.7735

0.9143
0.8348
0.7711

0.9147
0.8363
0.7738

0.9153
0.8370
0.7742

BSD100
×2
×3
×4

29.56
27.21
25.96

31.92
28.86
27.31

31.85
-

27.36

31.93
28.86
27.30

31.99
28.92
27.37

32.04
28.96
27.40

0.8431
0.7385
0.6675

0.8960
0.7976
0.7251

0.8948
-

0.7291

0.8970
0.7994
0.7269

0.8978
0.8010
0.7293

0.8984
0.8017
0.7301

Table 3: Ablation Study. We evaluate the contribution of the differ-
ent components in terms of PSNR performance on the Set5 dataset.
The baseline model is ByNet5 [9]. We separately and jointly include
dilated convolutions, parametric ReLU (PReLU), Charbonnier loss,
and dense blocks.

Dilated PReLU Charb Dense PSNR
Conv Loss Block 2× 3× 4×

37.61 33.79 31.44

! 37.62 33.87 31.57

! 37.60 33.80 31.45

! 37.70 33.81 31.45

! 37.60 33.76 31.43

! ! 37.63 33.92 31.56

! ! 37.74 33.97 31.59

! ! 37.55 33.89 31.56

! ! 37.71 33.81 31.45

! ! 37.70 33.88 31.52

! ! 37.63 33.72 31.35

! ! ! 37.72 33.93 31.56

! ! ! 37.63 33.90 31.59

! ! ! 37.58 33.89 31.56

! ! ! 37.77 33.89 31.56

! ! ! ! 37.70 34.03 31.66

output images have the same size, 41×41 in our implementa-
tion. LapSRN [23] takes 32×32 patches as input and outputs
64×64 and 128×128 patches for scales 2 and 4, respectively.

Table 2 shows quantitative results on the luminance chan-
nel, in terms of PSNR (in dB) and structural similarity (SSIM)
for different upscaling factors. Note that due to the deconvo-
lution operation, LapSRN does yield results for scale factor 3
directly. In [32] these are obtained by down-sampling results
for scale factor 4. Dense ByNet5 consistently achieves bet-
ter results than VDSR, LapSRN, and ByNet5. By adding two
more residual dense blocks the performance can be improved
further, as shown in the columns Dense ByNet7.

In terms of efficiency, Dense ByNet5 contains 393K net-
work parameters, and Dense ByNet7 contains 554K. Both are
lower than ByNet5 with 628K, VDSR with 665K, or LapSRN
with 812K parameters. Training Dense ByNet5 takes three
days, while at test time processing an image from BSD100
dataset takes 10ms on average.

4.4 Ablation study

We carry out an ablation study to evaluate the contribution
of each modification over the baseline network. These fac-
tors include dense block, dilated convolution, PReLU activa-
tion, and Charbonnier loss. In this experiment, all models are
tested on the Set5 dataset with a patch size of 41× 41.

Table 3 lists the PSNR scores of all combinations of
the four components. Compared with the baseline model
(ByNet5, results are shown in the first row of the table), us-
ing dilated convolution yields better performance, particularly
for larger scale factors. Charbonnier loss, on the other hand,
consistently improves the scores. Applying dense connection
blocks together with PReLU leads to PSNR improvement.
Interestingly, we observe that changing activation functions
from ReLU to PReLU alone does affect performance sig-
nificantly. Introducing dense connection blocks alone even
sightly harms the performance. The reason may be that the
dense blocks increase the number of activation functions.
The parameterized ReLU leads to more specialized activa-
tion functions which benefit the proposed dense-in-residual
structure. Finally, by adding all components, Dense ByNet5
outperforms ByNet5 with an average PSNR score of 0.18, at
a 38% reduction in the number of parameters.

5 Conclusion

This paper introduced Dense ByNet, a network architec-
ture for image super-resolution. The key contribution is the
combination of a residual block network architecture as in
ByNet [9] and dense connection layes as in DenseNet [10].
This leads to a significant reduction in the number of net-
work parameters, however at slightly reduced performance.
We show that by replacing ReLU with parametric ReLU
(PReLU) [22], the performance can actually be increased.
Other modifications include dilated convolutions for larger
receptive fields and a more suitable loss function, the Char-
bonnier loss, further increase performance. Experiments on
standard benchmarks show that Dense ByNet achieves state-
of-the-art performance in terms of PSNR and SSIM on the
image super-resolution task, while being highly computation-
ally efficient.
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