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ABSTRACT

This paper proposes a deep residual network, ByNet, for the
single image super resolution task. The main innovation is
the introduction of two effective components, bypass con-
nections and a feature scaling layer. Bypass connections are
formed either by skip connections that jump multiple layers
or by adding a convolution layer in such a jump. The final
feature scaling layer enables more robust convergence. Ex-
periments on standard benchmarks show that the proposed
method achieves state of the art results over multiple scales
in terms of PSNR and structural similarity (SSIM).

Index Terms— super resolution, deep convolutional neu-
ral networks, residual learning, image enhancement

1 Introduction
Image quality improvement includes denoising, dehazing,
and super resolution, and continues to be an active research
topic. In particular single image super resolution has seen sig-
nificant advances [1, 2, 3] and has been applied in areas such
as video enhancement [4], text image improvement [5, 6],
and medical image processing [7, 8]. Given a single low-
resolution (LR) image as input, super-resolution methods
learn a mapping to a high-resolution (HR) image. Impressive
results were shown using a single image to learn the mapping
by self-similarity [3, 9]. In general, however, it is beneficial
to use a larger training set, easily obtained by downsampling
HR images, to capture the nonlinearity of the upscaling func-
tion. Convolutional neural networks (CNN) are known for
their ability to learn highly nonlinear functions, and CNN-
based methods are currently the top performers in terms of
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM). Various network architectures have been proposed,
and this paper introduces an architecture with two new net-
work components, which increase performance compared to
VDSR [10] and are easy to implement. The first component is
a combination of bypass connection blocks, which can either
be simple skip connections or with an additional convolution
layer. The second component is a final feature scaling layer
that leads to faster convergence to a better solution.

2 Prior work
Super resolution methods can be divided into several ap-
proaches. Dictionary methods using sparse coding encode

Fig. 1: Example result. A region in the zebra image from Set14 [11]
shows improved recovery of detail (scale factor of 3).

image patches based on sparse signal representation [12,
13, 11]. Another dictionary-based approach is neighbor-
hood embedding, which interpolates low-resolution im-
age patches using a nonlinear embedding to obtain high-
resolution patches [14, 15]. Recently, convolutional neural
networks (CNN) have been successfully applied to the su-
per resolution task. The CNN directly learns an end-to-end
mapping between the low/high-resolution images. The early
Super Resolution CNN (SRCNN) [16], has a simple architec-
ture, feeding a low-resolution input image into two stacked
convolution and rectified linear unit (ReLU) layers. The
convolution layer performs a similar function to a sparse
coding dictionary and selects the best feature during the
learning phase. Following this work, a number of improve-
ments have been proposed. One line of work combines a
sparse coding model together with a neural network [17].
Kim et al. proposed a deeply-recursive convolutional net-
work, which is able to better preserve image context [18],
but has relatively high computational complexity. The Sub-
Pixel CNN in [19], introduces a sub-pixel convolution layer
to substitute the deconvolution layer for up-sampling. Kim
et al. [10] introduced a 20-layer network (VDSR) to learn
the residual image between the LR and HR image. This



method represents the state of the art in terms of PSNR over
multiple scales. Note that other reconstruction cost functions
have been proposed, for example in terms of a perceptual
loss [20]. The SRResNet method in [21] optimizes this loss,
achieving high PSNR values on standard test datasets for a
4 × upscaling factor when trained on ImageNet. Generative
adversarial networks, such as SRGAN [21], produce results
with a lower PSNR, but with a higher perceptual score.

3 Proposed Method
This section introduces our proposed super resolution method,
which uses a novel CNN architecture that includes bypass
connection blocks. Starting from a baseline model, which is
a lean version of VDSR, we describe the new components,
which in combination constitute the proposed ByNet SR
model.

3.1 Network Architecture
3.1.1 Baseline Network

Our baseline model is related to the VDSR model [10], which
is composed of 20 convolution and ReLU layers. Convolution
layers have a 3× 3 filter size with 64 channels except for the
last layer, which has a single 3× 3 filter. The network takes a
64×64×1 image X , obtained from the LR image via bicubic
interpolation, as input and each layer computes the function
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ing the mean squared error (MSE) between HR ground truth
Y and its estimation Ŷ , the model aims to minimize the loss
of residual 1

2 ||R − R̂||2, improving both accuracy and run-
time, where R = Y −X is the residual image.

Our baseline network analogously consists of 17 weight
layers with 3 × 3 filters. The first 16 layers contain 64 filters
while the last layer contains a single filter. As in VDSR, we
apply image residual learning for calculating the MSE loss. In
contrast to VDSR, none of the layers has a bias. We select this
lean version of VDSR for our baseline as it allows easy exten-
sion into our proposed network design, while ensuring that its
performance is still comparable to the published VDSR re-
sults.

3.1.2 Bypass Connections

Here we introduce two types of residual blocks that we in-
tegrate into the CNN architecture. Figure 2 shows these two
blocks, which both include bypass connections. The first
block, see Fig. 2(a), contains a skip connection, defined as:
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Fig. 2: New residual blocks used in ByNet: (a) feature bypass with
skip connection (b) feature bypass with convolutional connection.

As in the baseline case, all biases are omitted. Skip connec-
tions (sometimes called shortcut connections) have been used
in ResNet[22] and Highway Networks[23] for image classi-
fication. Note that skip connections introduce no additional
parameters or computational complexity, except for negligi-
ble element-wise addition. As shown in [22], skip connec-
tions improve convergence properties and achieve higher ac-
curacy within the same training epoch. However, when intro-
ducing skip connections in the super-resolution task, training
becomes prone to the vanishing gradient problem. Unlike in
object classification, the difference between the input and out-
put of the network is small, and many values in the residual
image are close to zero [10]. We therefore define a second
block type with an additional convolution layer to prevent the
gradient from vanishing, see Fig. 2(b):

y = f (ht(x)) + w
k
∗ ht(x). (4)

The element-wise addition layer sums the features learned
from different receptive fields of input help to further improve
the model robustness in terms of multi-scale capability. We
stack residual blocks with alternating types in sequence (see
Section 4.3 for this choice). Figure 3 shows ByNet5, which
contains three skip connection blocks (for the first, third, and
fifth residual block) and two convolution blocks (for the sec-
ond and fourth residual block).

3.1.3 Feature Scaling

In multi-scale training, disparately downscaled images make
training prone to divergence. Moreover, due to the large varia-
tion in each training mini-batch, the deeper the network is, the
harder it is for the network to converge. Gradient clipping and
image residual learning have been proposed as remedies [10],
yet we have still observed cases of divergence during train-
ing. We insert a scaling layer before the element-wise sum
layer of the baseline network, scaling the layers by a value
that is learned during training. Feature scaling improves con-
vergence by scaling the network output to fit the distribution



Fig. 3: ByNet5 architecture. The proposed CNN learns the non-linear mapping between LR/HR images. New elements of the architecture
(in color) are two types of residual blocks, which are alternated in sequence. Convolution layers before and after these blocks ensure correct
dimensions of the image features. An additional feature scaling layer is introduced before taking the element-wise sum.

Table 1: Number of parameters in the ByNet5 model.
layer kernel plane-in plane-out #layers #params

Conv0 3x3 1 64 1 576
ResBlock 1,3,5 3x3 64 64 3 3 × 110,592
ResBlock 2,4 3x3 64 64 4 2 × 147,456
Conv16 3x3 64 1 1 576
Scaling - 1 1 0 1

Total 627,841

of image residuals. Similar to the functionality of the CNN
initializer, the scaling layer takes the role of overall feature
weighting, allowing the network to converge by focusing on
the best gradient direction in the early optimization stages.

3.2 Training

Given an LR image x as input, the model learns to predict the
HR residual ŷ by minimizing the MSE, averaged over each
training mini-batch. The number of parameters in each layer
and block is shown in Table 1. LR images are obtained by
down-sampling HR images with the scale factors of 2,3, and
4. These sets of LR images are merged and shuffled for train-
ing which allows our model to naturally handle multiple scale
factors.

4 Results
Here we describe the datasets and provide the parameters re-
quired for model training to make the results reproducible.
We compare the method with bicubic scaling as well as with
state-of-the-art methods. Finally, we assess the contribution
of each new network component in an ablative study.

4.1 Datasets

To be consistent with prior work we use the same training
dataset as in [10, 24, 25], consisting of 291 images, which is
the combination of the 91 images from the dataset of Yang
et al. [12] and the 200 images from the BSD dataset [26].
Data augmentation includes mirroring, rotating (90, 180, and
270 degrees), and scaling (factors 0.6 and 0.8) each image,
providing a total of 6,984 training images. We evaluate on
three public datasets used in prior work [10, 16], Set5 [14],
Set14 [11], and BSD100 [24]. To generate HR/LR image pairs
we down-sample all HR images using Matlab’s bicubic inter-
polation function.

4.2 Parameter Settings
We train the CNN using stochastic gradient descent and a mo-
mentum of 0.9 and weight decay of 10−4 . A maximum of 40
training epochs with a batch size of 128 (2 × 64) is run on
two Nvidia GeForce GTX1080 GPUs. Following [10], gra-
dient clipping is utilized with a limit of 1.0. The learning
rate is initialized to 0.1 and divided by 10 every tenth epoch.
The initial parameter for the feature scaling layer is set to 0.1.
Xavier initialization [27] is used where all weights are drawn
from a zero-mean Gaussian with variance 1/nin, where nin

is the number of input units.

4.3 Analysis of Residual Block Arrangement
The two types of residual blocks can be arranged in various
ways. In order to limit the search space we evaluate different
symmetric arrangements of five bypass blocks in sequence,
with zero to five convolution bypass blocks, respectively, with
skip connections constituting the other blocks. The results
show that performance increases most from zero to one con-
volution blocks, and that there is a local PSNR maximum for
two convolution blocks, which we use in ByNet5. We also
test performance for deeper networks, ByNet7 and ByNet9.
For each extension we add two more blocks, one convolution
and one skip connection block.

4.4 Patch Size Analysis
All training images are partitioned into non-overlapping
patches of fixed size. This means that the larger the patch
size, the larger the receptive fields, but the smaller the num-
ber of training images. We evaluate the baseline model using
three different patch sizes, of side length 41, 52, and 62 pixels,
respectively. The resulting PSNR values, averaged over three
scales, are 34.20dB, 34.21dB, and 34.19dB, respectively. The
effects of larger receptive field and smaller training size seem
to balance out. Consistent with VDSR [10] we use 41 × 41
patches in the ablation study (in Section 4.6), and 52 × 52
patches for the final ByNet models that we compare to other
methods.

4.5 Comparison with State of the Art
We compare ByNet with the reported results of the follow-
ing methods on the same training and test sets: A+ [24],
RFL [25], SRCNN [16], and VDSR [10]. Table 2 shows the
quantitative results on the luminance channel, both PSNR (in



Table 2: Performance Comparison on benchmark datasets: PSNR and SSIM are averaged over all images for each scale. The proposed
ByNet model consistently achieves the best PSNR and SSIM results. Adding more blocks improves performance. Results for the recent VDSR
method [10] are highlighted in blue for easy visual comparison.

Dataset Scale Bicubic
PSNR

A+[24]
PSNR

RFL[25]
PSNR

SRCNN[16]
PSNR

VDSR[10]
PSNR

ByNet5
PSNR

ByNet7
PSNR

ByNet9
PSNR

Bicubic
SSIM

A+[24]
SSIM

RFL[25]
SSIM

SRCNN[16]
SSIM

VDSR[10]
SSIM

ByNet5
SSIM

ByNet7
SSIM

ByNet9
SSIM

Set5
×2
×3
×4

33.66
30.39
28.42

36.54
32.58
30.28

36.54
32.43
30.14

36.66
32.75
30.48

37.53
33.66
31.35

37.60
33.85
31.49

37.69
33.89
31.54

37.74
33.96
31.60

0.9299
0.8682
0.8104

0.9544
0.9088
0.8603

0.9537
0.9057
0.8548

0.9542
0.9090
0.8628

0.9587
0.9213
0.8838

0.9594
0.9237
0.8862

0.9598
0.9241
0.8871

0.9599
0.9246
0.8886

Set14
×2
×3
×4

30.24
27.55
26.00

32.28
29.13
27.32

32.26
29.05
27.24

32.42
29.28
27.49

33.03
29.77
28.01

33.13
29.92
28.20

33.21
29.94
28.20

33.24
29.96
28.24

0.8688
0.7742
0.7027

0.9056
0.8188
0.7491

0.9040
0.8164
0.7451

0.9063
0.8209
0.7503

0.9124
0.8314
0.7674

0.9138
0.8342
0.7716

0.9144
0.8350
0.7722

0.9147
0.8354
0.7732

BSD100
×2
×3
×4

29.56
27.21
25.96

31.21
28.29
26.82

31.16
28.22
26.75

31.36
28.41
26.90

31.90
28.82
27.29

31.92
28.86
27.31

31.96
28.89
27.34

32.00
28.91
27.37

0.8431
0.7385
0.6675

0.8863
0.7835
0.7087

0.8840
0.7806
0.7054

0.8879
0.7863
0.7101

0.8960
0.7976
0.7251

0.8967
0.7993
0.7267

0.8973
0.8001
0.7277

0.8977
0.8808
0.7285

Fig. 4: Ablation study. The convergence curves for the Set5 training set show that adding both feature scaling and bypass connections
consistently lead to increased PSNR across different scales.

dB) and structural similarity (SSIM), for different upscaling
factors. ByNet9 consistently achieves the top result, achiev-
ing a mean improvement of 0.25dB PSNR on the Set5 dataset.
It is impossible to directly compare published run-times as
the methods were implemented with different libraries on dif-
ferent machines. For comparison we re-implemented the 20-
layer VDSR method [10] and test on the BSD100 dataset (100
images at 3 scales each). The mean time per image is 37ms
for VDSR compared to 32ms for ByNet5, 45ms for ByNet7,
and 57ms for ByNet9. These numbers show the run-time vs.
performance trade-off of the ByNet architecture.

4.5.1 Increasing Training Set Size

We extend the training set by adding the recent General-100
dataset [28], to the 291 images, and evaluate ByNet5 trained
using the extended set on the Set5 data set. The resulting
PSNR values are 37.68, 33.89, and 31.54dB for scales 2, 3,
and 4, respectively, confirming that additional data further in-
creases performance.

4.6 Ablation Study
We carry out an ablation study to evaluate the contribution
of each proposed component, feature scaling and bypass con-
nection blocks. Models are tested on the Set5 dataset with

a patch size of 41 × 41. Figure 4 shows the evolution of
PSNR values during training until convergence, separately for
the three different scale values. Points worth noting are (1)
the combination of both components consistently yields the
best performance, (2) the improvement is not additive, and
(3) their relative contribution can differ for different scales,
e.g. for a scale value of 3 the bypass convolution is more ef-
fective, for a scale value of 4 the feature scaling layer is more
effective. We also observe that when using skip connections
without additional convolution layers training does not con-
verge to a good solution due to vanishing gradients.

5 Conclusion

In this paper we proposed ByNet, a new network architecture
for image super resolution, with state-of-the-art performance
in terms of PSNR and SSIM. The two main contributions con-
sist of bypass connection blocks as well as feature scaling.
Both are simple to implement, yet effective in increasing per-
formance as demonstrated in an ablative study and compar-
isons with competing methods on standard super resolution
benchmarks. For future work, we consider training on large-
scale data, e.g. ImageNet, to be a promising avenue [21].
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