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Abstract In applying the Hough transform to the prob-
lem of 3D shape recognition and registration, we de-

velop two new and powerful improvements to this pop-
ular inference method. The first, intrinsic Hough, solves
the problem of exponential memory requirements of

the standard Hough transform by exploiting the spar-
sity of the Hough space. The second, minimum-entropy

Hough, explains away incorrect votes, substantially re-
ducing the number of modes in the posterior distribu-

tion of class and pose, and improving precision. Our
experiments demonstrate that these contributions make

the Hough transform not only tractable but also highly

accurate for our example application. Both contribu-
tions can be applied to other tasks that already use the
standard Hough transform.

1 Introduction

The Hough transform [13], named after Hough’s 1962

patent [18] describing a method for detecting lines in
images, has since been generalized to detecting, as well

as recognizing, many other objects or instances: pa-

rameterized curves [13], arbitrary 2D shapes [3], ob-
ject motions [8], cars [16,24], pedestrians [4,16], hands
[30] and 3D shapes [21,31,37], to name but a few. This
popularity stems from the simplicity and generality of

the first step of the Hough transform—the conversion
of features, found in the data space, into sets of votes
in a Hough space, parameterized by the pose of the

object(s) to be found. Various different approaches to
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learning this feature-to-vote conversion function have
been proposed, including the implicit shape model [24]

and Hough forests [16,30].

The second stage of the Hough transform simply

sums the likelihoods of the votes at each location in
Hough space, then selects the modes. One problem with

this step is that the summation can create modes where
there are only a few outlier votes. A second problem is

that, given a required accuracy, the size of the Hough
space is exponential in its dimensionality. The applica-

tion we are concerned with, object recognition and reg-

istration (R&R) from 3D geometry (here, point clouds),
suffers significantly from both these problems. The Hough
space, at 8D (one dimension for class, three for rotation,
three for translation and one for scale), is to our knowl-

edge the largest to which the Hough transform has been
applied, and the feature-to-vote conversion generates a
high proportion of incorrect votes, creating a “mist” of

object likelihood throughout that space, as shown in

figure 2(a).

In the face of this adversity, we have developed two

important contributions which enable inference on this

task, and potentially many others, using the Hough
transform to be both feasible and accurate:

– We introduce the intrinsic Hough transform, which

substantially reduces memory and computational re-
quirements in applications with a high dimensional

Hough space.
– We introduce the minimum-entropy Hough trans-

form, which greatly improves the precision and ro-

bustness of the Hough transform.

These extensions of the Hough transform are not task
specific; they can be applied, either together or inde-

pendently, to any application that does or is able to
use the standard Hough transform.
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The rest of this paper is organized as follows: The
next section describes inference using the Hough trans-
form, and briefly reviews the literature relevant to our
contributions. In §3 we describe our new inference meth-

ods. The section following that describes and discusses

our experiments. Finally, we conclude in §5.

2 Background

2.1 3D shape recognition and registration

The implicit shape model of Leibe et al . [23,24] pio-

neered the use of the Hough transform for object recog-
nition in 2D images. This approach has since been ap-
plied to object recognition in 3D geometric data [21],
and extended to object registration [31,37]. For the dual

problem of R&R in 3D, the Hough space is either 7D

(if scale is known) [37] or 8D [31].

The feature extraction stages of these methods fol-

low the same pipeline: features are detected at a given

scale and position; a canonical orientation of the fea-
ture is estimated; a descriptor for the feature is com-

puted. The votes are then computed by matching fea-
tures in the test data with features from training data
with ground truth class and pose, either directly (i.e. a

nearest neighbour search) [31], or via a codebook cre-

ated by clustering the feature descriptors [21,24,37].

In this work we will be using the feature-to-vote
conversion process of Pham et al . [31] as an off-the-

shelf method, since our contributions lie in the second
stage of the Hough transform. It is this process that
generates a high proportion of incorrect votes, amongst

which the correct votes need to be found.

2.2 The Hough transform

The earliest descriptions of the Hough transform [3,13,

18] present it as an algorithm, but more recently there
has been a desire to cast the framework in a probabilis-
tic light. Generative model interpretations [2,4,35] in

which the votes represent likelihoods of features, given

an object pose, require that the likelihoods of these in-
dependent variables be multiplied, in contrast to the
summation of the Hough transform. The summation

has been explained in two ways: firstly that it is in fact

over the log likelihood of features [4,35], though this
requires a differently shaped distribution for each vote

than is typically given [4], or secondly that it is a first
order approximation to a robustified product of likeli-
hoods [2,29]. We prefer to interpret the second stage of

the Hough transform as a discriminative model of the
posterior distribution of an object’s location, phrased

simply as a kernel density estimate over all the votes

[8,44].
Let y be an object’s location in a Hough space, H,

which is the space of all object poses (usually real) and,

in the case of object recognition tasks, object classes

(discrete). Furthermore, let the list of votes, cast in H
by N features, which are computed in some first stage
feature-to-vote conversion process (not addressed here)

be denoted by X = {{xij}
Ji

j=1
}Ni=1

. The posterior prob-
ability of an object’s location is then given by

p(y|X,ω,θ) =

N
∑

i=1

ωi

Ji
∑

j=1

θijK(xij ,y), (1)

where Ji is the number of votes generated by the ith

feature, K(·, ·) is a density kernel in Hough space, and

ω = {ωi}
N
i=1

and θ = {θij}∀i,j are feature and vote

weights respectively, s.t. ωi ≥ 0, ∀i,
∑N

i=1
ωi = 1, and

θij ≥ 0, ∀i, j,

Ji
∑

j=1

θij = 1, ∀i ∈ {1, .., N}. (2)

For example, in the original Hough transform used for
line detection [13], the features are edgels, votes are

generated for a discrete set of lines (parameterized by

angle) passing through each edgel, the kernel, K(·, ·),
returns 1 for the nearest point in the discretized Hough

space to the input vote, 0 otherwise, and the weights,
ω and θ, are set to uniform distributions. Recently

methods have been proposed for learning a priori more

discriminative weights [27,44] for object detection, as
well as evaluating over different kernel shapes [44].

The final stage of the Hough transform involves find-
ing, using non-maxima suppression, the modes of this

distribution whose probabilities are above a certain thresh-
old value, τ .

2.2.1 Computational feasibility

Finding the modes in H involves sampling that space,

the volume of which increases exponentially with its di-
mensionality, d. Several approaches have been proposed

to reduce this burden, which we categorize as one of ap-

proximate, hierarchical, irregular or mode-seeking.

Approximate methods use reduced-dimensionality ap-
proximations of the full Hough space to find modes.

For example, given a 6D pose (translation & rotation),

Fisher et al. [15] quantize translations and rotations in
two separate 3D arrays (peak entries in both arrays
indicate an object, but multiple objects create ambigu-

ities), while Tombari & Di Stefano [37] find modes over
translation only, then compute an average rotation for

each mode. Geometric hashing techniques, e.g . [12,22,

28], also fall into this category.
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Hierarchical approaches, such as the fast [25] and adap-

tive [19] Hough transforms, sample the space in a coarse-
to-fine manner, exploiting the sparsity of some areas,
though their complexity is still exponential in d.

Irregular methods do not sample the Hough space reg-

ularly, but rather sample only where objects are likely
to be detected, again exploiting potential sparsity in

H. For example, the combinatorial [5] and randomized

[42] Hough transforms generate lists of sampling loca-

tions, the former for all lines (in line detection) joining

pairs of edgels in confined regions, the latter for curves
(in curve detection) defined uniquely by random sets of
edgels. Both these approaches are task specific, whereas
the intrinsic Hough transform introduced here, which

also falls into this category, is not.

Mode-seeking methods find modes in H through iter-
ative optimization [8,9]. Mean shift [9] is the most com-

monly used approach, the complexity of which is O(nd2),

where n =
∑N

i=1
Ji (the total number of votes). It has

successfully been applied to an 8D Hough space [31].

However, it needs to be initialized in many, perhaps
O(n), locations, making the total complexity O(n2d2),
and is not guaranteed to find every mode. Two exten-

sions of this approach, though generally applied to clus-

tering rather than mode seeking, are medoid shift [34]
and quick shift [38].

These approaches can also be combined. For exam-
ple, modes found in a coarse sampling of H can be re-
fined using mean shift [24], an approach we employ here.

2.2.2 Explaining away votes

The summing of votes in the Hough transform enables
incorrect votes to generate modes in H, and since most

applications tend to produce a large number of incor-
rect votes, this can lead to false detections, especially
in multi-object detection scenarios. The problem arises

from the fact that each test feature generates a number
(often quite large) of votes, which represent the loca-
tions of all objects that could have generated that fea-
ture, but usually only one of those votes will actually

be correct, because most features are generated by only
one object. Figure 2(a) visualizes the ambiguity caused
by these incorrect votes in our R&R application.

If we assume, usually correctly, that a feature is gen-

erated by only one object, we can then enforce the re-

sulting implicit constraint that only one vote cast by

each feature is correct. By choosing which vote this is
for each feature, the other votes can then be dismissed

as being incorrect, removing them from the transform—
the correct vote essentially explains away all the other

votes. This assumption was first applied to the Hough

transform in the 1980s by Gerig [17], using a two stage
approach, first computing the standard Hough trans-
form, then, simultaneously for each feature, collating

the values of the Hough transform at the locations of

all votes of a given feature, and keeping only the vote
at the highest value.

The idea was resurrected more recently by Barinova
et al . [4], using an approach akin to the Hough trans-
form, in that it exhaustively samples the Hough space

while searching for objects. However, they directly en-
force the constraint that a feature is generated by only

one object, using feature-to-object assignments, with

a cost per object detection. Phrasing the problem as
an energy minimization, they greedily detect objects in
Hough space, assigning to them features which decrease

the overall energy. Furthermore, rather than using ker-

nels that tail off to zero, their kernels continue decreas-
ing away from the vote, with an explicit background
assignment for outlier features.

Several other multi-object detection frameworks also
make explicit feature-to-object assignments: energy-min-
imization-based methods [7,10,11,20,41], which itera-

tively update the assignments; RANSAC, similar to
energy-based methods but focusing more on the al-
gorithm than the objective function, with features as-

signed either greedily [39] or with iterative refinement

[43,45]; non-parametric methods, which cluster features
into groups representing objects [36].

A benefit of methods using feature-to-object assign-
ments, as opposed to the feature-to-vote assignments of
Hough-based methods, is that they avoid the last step

of the Hough transform: non-maxima suppression of ac-
cumulated votes in Hough space.

3 Our framework

This section describes our improvements to the Hough
transform. In §3.1 we introduce the intrinsic Hough
transform, which overcomes the high memory require-

ments of the standard Hough transform with high-dim-
ensional Hough spaces. In §3.2 we introduce a method
which exploits the assumption that only one vote per

feature is correct.

3.1 The intrinsic Hough transform

As discussed in §2.2, high-dimensional Hough spaces re-

quire infeasible amounts of memory to sample regularly.
However, we note that while the volume of the Hough

space increases exponentially with its dimensionality,

the number of votes generated in applications using
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the Hough transform generally does not, implying that
higher dimensional Hough spaces are often sparser. We
exploit this sparsity by sampling the Hough space only
at locations where the probability (given by equation

(1)) is likely to be non-zero. Assuming that the density

kernel, K(·, ·), in equation (1) is zero-mean and uni-
modal (which is generally true for kernel density esti-

mation), the modes of the distribution will be at or near
the locations of the votes. We therefore simply sample
the Hough space at the locations of the votes them-

selves. Since the votes define the distribution, therefore
are intrinsic to it, we call this approach the intrinsic

Hough transform.

While similar in some respects to intrinsic mode-
seeking algorithms [34,38], the intrinsic Hough trans-
form does not seek modes through iterative updates.

Rather, the modes of the distribution are detected using

non-maxima suppression, as per the standard Hough
transform; here, a sample location, y, is classified as a

mode if no other sample location, z, within a certain
distance, s.t. K(y, z) > γ, has a higher probability. Im-

plicit in this approach is the assumption that the lo-

cal modes of the distribution given by equation (1) lie
very close to a vote—this is the case for most shapes
of kernel used in practice. As a final step to improve
accuracy, the location of each mode found is updated

with one step of mean shift. The memory and com-
putational requirements of this approach are O(n) and
O(n2d2) respectively.

3.2 The minimum-entropy Hough transform

Making the assumption that only one vote per feature

is correct, a vote that is believed to be correct should

explain away the other votes from that feature. This
suggests that, rather than being given θ a priori, it
would be beneficial to optimize over its possible values,

giving those votes which agree with votes from other
features more weight than those which do not.

One way of achieving this is by minimizing the in-

formation entropy1 of p(y|X,ω,θ) w.r.t. θ. A similar
approach, but minimizing entropy w.r.t. some param-

eters of the vote generation process, has already been
used for lens distortion calibration [32]. A lower entropy

distribution contains less information, making it more
peaky and hence having more votes in agreement. Since

information in Hough space is the location of objects,
minimizing entropy constrains features to be generated
by as few objects as possible. This can be viewed as

enforcing Occam’s razor. The objective function to be

1 Specifically we use the Shannon entropy [33], H =
E[− ln p(x)] = −

∫
p(x) ln p(x) dx.

minimized is therefore

f(θ) = −

∫

H

p(y|X,ω,θ) ln p(y|X,ω,θ) dy (3)

However, computing this entropy involves an integra-
tion over Hough space; for our application this is very
large. To make this integration tractable we sample the

space at discrete locations using importance sampling

[26, §29.2]; as with the intrinsic Hough transform, we
sample the Hough space at the locations of all the votes.
The value of θ is therefore approximated by

θ = argmin
θ

′



−
N
∑

i=1

Ji
∑

j=1

p(xij |X,ω,θ′)

q(xij)
ln p(xij |X,ω,θ′)





(4)

where q(·) is the (unknown) sampling distribution from
which the votes are drawn. Once this optimization (de-

scribed below) is done, the estimated θ is applied to
equation (1), and inference continues as per the stan-
dard (or intrinsic) Hough transform. We call this ap-

proach the minimum-entropy Hough transform.2

3.2.1 Optimization framework

It turns out, as we show in Appendix A, that a global

minimum of equation (3) must lie at an extremum of the
parameter space, which is constrained by equation (2),

such that at least one optimal value of θi = {θij}
Ji

j=1

(i.e. the vector of feature i’s vote weights) will be an
all 0 vector, except for one 1, i.e. minimizing entropy
naturally enforces the one-correct-vote-per-feature con-

straint. As a result, a global minimum can always be

found if we limit the search space for each θi to inte-
ger values, making a discrete set of Ji possible vectors,
s.t. the total number of possible solutions is

∏N

i=1
Ji.

It should be noted that this search space is not uni-

modal—for example, if there are only two features and
they each identically generate two votes, one for loca-

tion y and one for location z, then both y and z will
be modes. Furthermore, as the search space is exponen-

tial in the number of features, an exhaustive search is
infeasible for all but the smallest problems.

We therefore use a local approach, iterated condi-

tional modes (ICM) [6], to quickly find a local minimum

of this optimization problem. This involves updating
the vote weights of each feature in turn, by minimiz-
ing equation (4) conditioned on the current weights of

2 Strictly speaking, the minimum-entropy Hough transform
is not a transform, because the probability of each location
in Hough space cannot be computed independently.
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all other votes, and repeating this process until conver-
gence. The correct update equation for the vote weights
of a feature f is as follows:

pfk(y|X,ω,θ) = ωfK(xfk,y)+
∑

∀i 6=f

ωi

Ji
∑

j=1

θijK(xij ,y),

(5)

k =
Jf

argmax
k′=1





N
∑

i=1

Ji
∑

j=1

pfk′(xij |X,ω,θ)

q(xij)
ln pfk′(xij |X,ω,θ)



 ,

(6)

θfk = 1, θfj = 0, ∀j 6= k. (7)

However, since this update not only involves q(·), which
is unknown, but is also relatively costly to compute, we
replace it with a simpler proxy which in practice per-

forms a similar job of encouraging the resulting poste-
rior distribution to be as peaky as possible:

k =
Jf

argmax
k′=1

pfk′(xfk′ |X,ω,θ). (8)

This is effectively the strategy of Gerig, but applied

sequentially rather than simultaneously. Since the op-
timization is local, a good initialization of θ is key to

reaching a good minimum. In our experiments we start
at the value of θ used in the standard Hough transform,

then applied the following update to each vote weight
simultaneously:

θik =
pik(xik|X,ω,θ)

∑Ji

j=1
pij(xij |X,ω,θ)

, (9)

iterating this five times before starting ICM. Initially

updating weights softly, i.e. not fixing them to 0 or 1,

and synchronously, avoiding ordering bias, in this way
helped to avoid falling into a poor local minimum early

on, thus improving the quality of solution found.

4 Experiments

4.1 Setup

For our test application, 3D shape R&R, we use the

framework introduced by Pham et al . [31], outlined in
figure 3, the evaluation data from which can be found

online [1]. It consists of 100 test instances, each con-
taining one object, for each of 10 object classes, shown

in figure 4, i.e. 1000 test instances in total. Each test
instance provides ground truth 7D object pose (scale
and 3D rotation and translation) and class, and a set

of input votes, with weights, for object pose and from
all 10 classes.

For the density kernel, K(·, ·), of equation (1) we

use a Gaussian kernel on a symmetric version of the
SRT distance between direct similarity transforms [31].
For two object poses, y and z, of the same class, it is

defined as

K(y, z) =
1

ζ
exp

(

−
d2s(y, z)

σ2
s

−
d2r(y, z)

σ2
r

−
d2t (y, z)

σ2
t

)

,

(10)

ds(y, z) =

∣

∣

∣

∣

log
s(y)

s(z)

∣

∣

∣

∣

, (11)

dr(y, z) =
√

1− |q(y)Tq(z)|, (12)

dt(y, z) =
||t(y)− t(z)||
√

s(y)s(z)
, (13)

where s(y), q(y) and t(y) are the scale, rotation (as

a quaternion) and translation components of y respec-
tively. If y and z specify different classes, thenK(y, z) =

0. The values of the bandwidth parameters, σs, σr and
σt, given in table 1, are those learned in [31]. The nor-

malization factor, ζ, cannot easily be computed, but is
independent of z [31], therefore, since our equations (8)
& (9) are scale independent,3 it can be ignored.

4.2 Methods

As well as evaluating the relative performance of the
two Hough transforms introduced in §3.1 & 3.2, we
compare them with the SRT mean shift method of [31]
(henceforth referred to as “mean shift”), and the infer-

ence methods of Gerig [17] and Barinova et al . [4] (here
referred to simply as Gerig and BLK, after the authors,
for short), and finally a Greedy approach which com-

putes the standard Hough transform, finds the maxi-

mum and adds the corresponding object to the list of
found objects, then removes all of the votes of all fea-

tures that voted for that object, and repeats the pro-
cess until no votes are left. Apart from mean shift, the
methods all use the intrinsic Hough transform to make

sampling H feasible. For the mean shift refinement step

of the intrinsic Hough transform, we use the closed-form
mean given in [31], despite our slightly different density
kernel. However, we do not refine the detections of BLK

because their probability distribution is not amenable
to this, since the likelihoods are multiplied. The like-
lihood function used in our implementation of BLK
is the same kernel density function used in the other

methods, defined in equation (10). We note that the

parameters of this kernel were learned in [31] specifi-
cally for Hough-based inference, therefore might not be

3 The requirement for a scale independent optimization
strategy is a further reason to use the proxy of equation (8).
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σs σr σt γ λ

a–f a–f a–f b–e f
0.0694 0.12 0.12 exp(−8) 10

Table 1 Parameter values for the inference methods
tested: (a) mean shift, (b) intrinsic Hough, (c) minimum-
entropy Hough, (d) Gerig, (e) Greedy, (f) Barinova et al . [4].

optimal for BLK. Parameter values used for the various

methods are summarized in table 1.

4.3 Results

4.3.1 Quantitative results

Quantitative results, computed using the ground truth
classes and poses provided in the evaluation set, and

using the registration criterion in [31], are given in ta-
bles 2 & 3 and figure 1. There is a small improvement in
performance in both registration and recognition mov-
ing from mean shift to intrinsic Hough, which is most

likely due to modes being missed by mean shift. Recog-
nition rates then increase rapidly moving to Gerig, then
Greedy, then finally minimum-entropy Hough, whose

recognition rate, the largest seen, with only 1.5% of ob-
jects are left unrecognized, the majority of those in the

car class, is a huge improvement on mean shift, provid-
ing a 96% reduction in misclassifications. This improve-

ment is due to the improved assignment of the correct
vote per feature, from a one-shot simultaneous assign-

ment, to a greedy assignment, to an iteratively refined

assignment. Minimum-entropy Hough also shows a sig-
nificantly improved registration rate, with top scores on
7/10 classes. BLK, though greedy, performs almost as

well as minimum-entropy Hough in terms of recogni-
tion, though less well in terms of registration, in part
due to a lack of mean shift pose refinement at the end.

However, because these results only reflect the best

detection per test, they do not tell the whole story;
we do not know how many other (incorrect) detections
had competitive weights. To see this, we generated the

precision-recall curves shown in figure 5, by varying the
detection threshold, τ (or λ for BLK [4]). A correct
detection in this test required the class and pose to
be correct simultaneously, and allowed only one correct

detection per test. The curves show that precision re-

mains high as recall increases for the minimum-entropy
Hough transform, and marginally less so for BLK and

Greedy, all of which are able to explain away incor-
rect votes, while it drops off rapidly with recall for the
other methods, indicating that the latter methods suffer

from greater ambiguity as to which modes correspond
to real objects, or perhaps in the case of Gerig, the

Recognition Registration Time

Mean shift 64.9% 72.8% 0.427s
Intrinsic Hough 67.6% 73.0% 0.192s

Min.-entropy 98.5% 79.6% 0.214s
Gerig 71.8% 73.3% 0.218s
Greedy 85.7% 70.3% 0.226s
BLK 98.1% 75.1% 0.224s

Table 2 Quantitative results for the inference methods
tested.

wrong correct-vote assignments being made. Interest-
ingly, Greedy and minimum-entropy Hough have lower

maximum recall rates (of 0.759 and 0.813 respectively),

which we propose is due to some correct modes be-
ing “explained away”. Since, in the case of minimum-
entropy Hough, our optimization strategy finds only a
local minimum, we cannot be sure whether this effect is

due to the objective function or the optimization strat-
egy.

In terms of computation time (table 2), all methods
tested had the same order of magnitude speed, with
the mean shift approach being about twice as slow as

the others, though there is a trade-off of time versus
accuracy with this approach, by changing the number

of starting points of the optimization. However, we no-

ticed that the speed of BLK was dependent on the value
of λ, its detection threshold, and therefore equally the
number of objects in the scene, unlike the other meth-

ods.

4.3.2 Qualitative results

The benefit of explaining away incorrect votes is demon-

strated in figure 2. While the standard Hough transform
shows a great deal of ambiguity as to where and how
many objects there are, the minimum-entropy Hough

transform is able to clear away the “mist” of incorrect
votes, leaving six distinct modes corresponding to the
objects present; there are some other modes, but these
are much less significant, corroborating the results seen

in figure 5.

The benefit of having correct and clearly defined

modes is demonstrated in figure 6, using the same point
cloud as in figure 2, a challenging dataset containing

three pairs of touching objects. Both minimum-entropy

Hough and BLK find all six objects in the top six de-
tections (though both mis-register the piston lying at a
shallow angle), whereas the other methods find not only

incorrect objects, but also multiple instances of correct
objects (particularly the piston on the cog).
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Table 3 Registration rate per class (%) for the six inference methods tested.
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Fig. 1 Confusion matrices for the six inference methods tested.

5 Conclusion

We have introduced two key extensions of the Hough
transform, which can be applied to any approach us-

ing the Hough transform. The first, the intrinsic Hough
transform, changes the memory requirements of the
Hough transform from O(kd), (k > 1) to O(n), making
it feasible for high-dimensional Hough spaces such as

that of our 3D shape R&R application. The second, the
minimum-entropy Hough transform, was shown to sig-
nificantly increase detection precision over mean shift

on our task. We also showed that it marginally outper-
formed the probabilistic method of Barinova et al . [4],

as well as benefiting from a computation time that is

independent of the number of objects in the scene, and
allowing the straightforward refinement of modes using
mean shift.

However, given that the kernel density parameters
used were optimized for Hough-based approaches and

not for BLK, the real “take home” message of this pa-
per is that the assumption that only one vote generated
by each feature is correct is a powerful constraint in

Hough-based frameworks, which can dramatically im-
prove inference by “clearing the mist” of incorrect votes,

as long as the correct vote is chosen well. We also note

that several inference approaches outside the Hough do-
main enforce a similar constraint, that only one object
generates each feature, e.g . [10,11,20,41]; these meth-
ods may well perform similarly, and potentially even

better, on the same problem.

Acknowledgements The authors are extremely grateful to
Bob Fisher, Andrew Fitzgibbon, Chris Williams, John Illing-
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feedback on this work.

A Proof of the integer nature of vote weights

Theorem 1 Given equation (3), an integer set of optimal
values of θ exists, i.e. for which θij ∈ {0, 1} ∀i, j.

Proof Let us assume that θ is at its globally optimal value,
and consider only the weights of the ith feature (i.e. assume
the other weights are fixed), so that

p(y|θi) = C(y) + ωi

Ji∑
j=1

θijK(xij ,y), (14)

where C(y) is a function which is independent of θi. The
objective function can then be written as

f(θi) = −

∫
H

p(y|θi) ln p(y|θ′

i) dy. (15)

We distinguish between the two instances of θi in the equa-
tion above purely for the purposes of the proof. The objective
function can be rewritten as follows:

f(θi) = D −
Ji∑

j=1

θijaij (16)

aij =

∫
H

ωiK(xij ,y) ln p(y|θ′

i) dy (17)

where D is a constant. Given the constraints of equation (2),
minimizing equation (16) with respect to θi, whilst keeping
θ
′
i fixed, can always be achieved by setting θij = 1 for one

j for which aij is largest, and setting all other weights to
0. In addition, Gibbs’ inequality [14] implies that equation
(15) is minimized when θi = θ

′
i (as we require them to be).

Therefore the ith feature must have an integer set of optimal
weights. This argument can be applied to each feature inde-
pendently. ⊓⊔
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