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Abstract. This paper presents a new class of moves, called α-expansion-
contraction, which generalizes α-expansion graph cuts for multi-label en-
ergy minimization problems. The new moves are particularly useful for
optimizing the assignments in model fitting frameworks whose energies
include Label Cost (LC), as well as Markov Random Field (MRF) terms.
These problems benefit from the contraction moves’ greater scope for
removing instances from the model, reducing label costs. We demon-
strate this effect on the problem of fitting sets of geometric primitives to
point cloud data, including real-world point clouds containing millions
of points, obtained by multi-view reconstruction.

1 Introduction

With recent advances in 3D data capture, the problem of fitting multiple in-
stances of geometric primitives to 3D data, which was studied extensively in the
early computer vision literature [1,2,3,4], has received renewed interest [5,6,7].
Such models are necessary not only when data is noisy or poorly sampled, requir-
ing greater regularization, but also when scenes can be represented by a small
number of primitives of known type, e.g . quadric surfaces [4].

The task of fitting multiple instances is generally challenging due to a large
configuration space of potential models, leading to a difficult optimization prob-
lem consisting of a discrete assignment of points to primitives, as well as a con-
tinuous parameter optimization problem. With energy-based frameworks that
include both label cost (LC) and MRF terms (like ours), the assignment prob-
lem can be solved using multi-label graph cut methods [7,8]. However, standard
moves such as α-expansion will be shown to have limitations when applied to this
task. We introduce α-expansion-contraction moves to overcome this deficiency.

We now review model fitting methods, and the relevant discrete energy op-
timization literature.

1.1 Model fitting

Both the Hough transform [9] and RANSAC [10] are model fitting algorithms
that, given a set of features (here, points), find the most likely model instance
(here, primitives) that generated those features. The former discretizes the in-
stance parameter space, then iterates through features, incrementing the vote
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count for every instance that feature might be generated by. While exhaus-
tive to within the discretization accuracy, this approach scales poorly to high-
dimensional parameter spaces. RANSAC solves this problem by instead iterating
through instances, hypothesizing one instance at a time, computed from random,
minimal sets of features, counting the votes for that instance, then storing the
most-voted-for instance.

Neither method is suited to multi-instance fitting, as features, though in
general generated by a single instance, vote for multiple instances, creating false
peaks. This issue was first addressed in the Hough transform by Gerig [11], who
proposed greedily assigning features to instances in a one-to-one mapping, the
importance of which was recently rediscovered [12,13]. RANSAC has been ex-
tended using a similar greedy approach: running it multiple times, and removing
points associated with successfully fitted instances [5,14]. One drawback, that
points, once assigned, cannot change assignments, is addressed by the J-linkage
algorithm [15], which uses a clustering step to make the assignments. Similarly,
both families of methods have been extended to locally optimize instance pa-
rameters [16,17] while computing assignments.

Several more recent, energy-based methods [7,8,18] incorporate the notion
of the one-to-one mapping of features to instances in an assignment labelling,
which is updated iteratively, along with the parameters of each instance, in a
coordinate descent manner. These can be seen as generalizations to both Hough
and RANSAC approaches, initializing instances randomly like RANSAC, and
maintaining a list of potential instances like the Hough transform, whilst also
enforcing a feature-to-instance assignment similarly to [11,12,13,15], and per-
forming local optimizations similarly to [16,17]. Importantly, the assignments
are free to change throughout the optimization.

1.2 Discrete optimization

The assignment update of energy-based model fitting algorithms (like ours) is
essentially a discrete optimization over labellings, given data likelihood and reg-
ularization terms. When the latter incorporates a pairwise MRF spatial smooth-
ness cost on the labelling, this problem is generally NP-hard,1 but an evalua-
tion [19] indicates that optimizers such as TRW-S and graph cuts find good
approximations. In our case, graph cuts is preferable as it has much lower mem-
ory requirements, which is important given the size of our point clouds and
number of potential primitives.

Using graph cuts, multi-label energies can be iteratively minimized through
a series of graph cut optimizations, called moves, each of which fuse a proposal
labelling to the current labelling [20,21,22,23]. At each iteration the optimal
output labelling, L = (li)

N
i=1, can be found in polynomial time when all pairwise

terms, Vij , satisfy the submodularity constraint [24]:
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1 Some energies can be minimized optimally in polynomial time, but these fall outside
the scope of our work.
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where i and j represent indices of points, and lci and lpi their current and pro-
posed labels respectively. Existing strategies for choosing the proposal labelling,
which determines a move space (the set of possible output labellings), include
α-expansion [20], αβ-swap [20], α-expansion β-shrink [21], range moves [25]
(multi-label) and fusion moves [22,23]. Two such move spaces, given by the
two labellings fused at each graph cut optimization, are

li =

{
α for lci = α

α or lci otherwise
, li =

{
α or β for lci = α

α or lci otherwise
,

(α-expansion [20]) (α-expansion β-shrink [21])

(2)

where α and β change to a new label in every iteration. The submodularity
constraint requires that every multi-label pairwise term, Vij , be metric [20] for
both these moves. Other moves have other requirements; fusion moves allow
general pairwise terms and proposal labellings, but guarantee only not to increase
the energy at each iteration [23].

Label cost terms Model complexity terms formalize the notion that simple
models are a priori more likely than complex ones. One example, the minimum
description length (MDL) criterion [26], has been used in image [27,28] and
motion [29] segmentation. Recent model fitting algorithms use a simpler term,
called labels costs [8], consisting only of a cost for each instance in the model
[7,8,12], which is paid when at least one feature is assigned to the instance.

It is known that such global label costs can be constructed from pairwise
terms; see [8] for a discussion. However, the most intuitive way this can be seen
is by creating an explicit, binary latent variable (e.g . visibility variables in [22]),
bγ , to represent the existence of a particular instance, say with label γ, with
unary costs of Uγ(bγ = 0) = 0 and Uγ(bγ = 1) = c, c being the instance’s label
cost. Connecting each point, i, to the latent variable with a pairwise constraint
term of the form

Viγ(li, bγ) =

{
∞ for li = γ, bγ = 0

0 otherwise
, (3)

ensures that if at least one point is assigned to the instance, then the label cost
is paid. If all labels of a particular value are associated with the same binary
label in each graph cut optimization, then the pairwise terms are identical and
either all submodular, or non-submodular, in which case the meaning of bγ can
be inverted to ensure submodularity of all the pairwise terms connected to it.
This is the case for α-expansion, since the label α is associated with 0 and all
other labels are associated with 1.

Given a model consisting of several instances, one potential way to reduce the
energy is to remove redundant instances/labels, thus removing their label costs.
However, all current submodular moves can only remove a label in a single graph
cuts optimization by replacing that label entirely with a single other label. This
means that if the optimal replacement of a label involves several other labels,
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(a) Current (b) Intermediate (c) Intermediate (d) Optimal

Fig. 1: Removing labels. (a) A given suboptimal labelling. (b), (c) Two ex-
ample intermediate labellings on the way to the optimal labelling (d), which
cannot be reached from (a) in a single move using any of α-expansion, αβ-swap
or α-expansion β-shrink, as none allow one label to be replaced with two others.

multiple moves must be used to achieve this (see figure 1). If the energies of
all intermediate labellings are higher than the current energy, then the optimal
outcome is not achievable—the labelling is in a local minimum. The α-expansion-
contraction moves proposed here can replace labels with multi-label proposals
in a single optimization, allowing these local minima to be avoided.

Alternatively, merge steps [7] can alleviate this problem, by proposing to
merge pairs of labels while simultaneously optimizing the instance parameters
for the merged assignments, but this approach is task specific.

1.3 Contributions

In §3 of this paper, we propose the new class of α-expansion-contraction moves,
which generalizes α-expansion with the ability to remove, or contract, the α label
with a proposal labelling of any configuration. Using α-expansion-contraction as
our basic scheme, we introduce two methods for selecting a proposal labelling
for the labels currently assigned to α. In §4 we demonstrate the benefits of
α-expansion-contraction in the context of geometric primitive fitting, as well as
evaluating on a standard stereo dataset, showing that both proposals improve on
energies found using α-expansion when label costs are predominant. We further
show the suitability of this approach to large-scale problems. First we introduce
our energy-based geometric primitive model fitting framework.

2 Model fitting framework

Given a set of input points, {xi}Ni=1, consisting of 3D position and normal direc-
tion, our goal is two-fold: to compute the parameters, Θ = {θk}Mk=1 (θk being
the parameter vector of the kth primitive) of a set of primitives of unknown
(i.e. variable) size, M , and to find the labelling L = (li)

N
i=1 that assigns points

to primitives, s.t. li ∈ {0, ..,M}, 0 denoting the unassigned state. We use an
energy-based framework, defining the energy and optimization strategy below.
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2.1 Energy function

Our energy, consisting of a data term which encourages fidelity of the model to
the data, an MRF term which encourages spatially coherent labellings, and an
LC term which encourages simpler models, is defined as

E(L,Θ) =

N∑
i=1

Di(xi, θli)︸ ︷︷ ︸
data term

+λMRF

∑
(i,j)∈N

V (li, lj)︸ ︷︷ ︸
MRF term

+λLC

M∑
k=1

wT (k)δL(k)︸ ︷︷ ︸
LC term

, (4)

where λMRF and λLC are input parameters which weight the importance of the
regularization terms. We describe the three terms below.

We assume that each xi is a measurement of some point yi on θli (i.e. the
position of yi is on the surface of θli and its normal direction is the normal vector
of θli at that position), with known Gaussian noise. While it is theoretically
correct to marginalize over the possible values of yi, in practice we approximate
this by using only the closest point to xi on θli , denoted by θli(xi). Our per-point
data cost is therefore

Di(xi, θli) = (θli(xi)− xi)
TΣ̄−1i (θli(xi)− xi), (5)

where {Σ̄i}Ni=1 represents the set of given per-point covariance matrices. The data
cost of the unassigned label, li = 0, is a fixed cost equivalent to two standard
deviations of the noise term.

The MRF term regularizes instance boundary length, encouraging spatial
coherence, by penalizing pairs of neighbouring points which do not share the
same assignment, i.e. a Potts model, thus:

V (li, lj) =

{
0 for li = lj

1 otherwise
. (6)

The neighbourhood set, N , is a list of all pairs of points which are close to each
other, closeness here defined using Euclidean distance below some threshold.

The LC term penalizes model complexity by paying a cost for each primitive,
indexed by k, when at least one point is assigned to it, thus:

δL(k) =

{
1 ∃i : li = k

0 otherwise
. (7)

This cost is weighted by a factor, wT (k), which is defined according to the type
of primitive, denoted T (k), and is equal to the number of free parameters of each
primitive type.

This energy function is very similar to that of [7,8], but additionally incor-
porates normal errors into the data term.
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Algorithm 1 Optimization pseudo-code for fitting primitives to a point cloud

Require: point cloud {xi}, i = 1, .., N
1: t = 0 : Initialize assignments L and parameters Θ, compute energy E0

2: while Et < Et−1 do
3: Add new primitives (optional)
4: Update assignments L with graph cuts using α-expansion-contraction
5: Remove primitives with no points assigned to them
6: Optimize parameters Θ using Levenberg-Marquardt
7: Recompute energy Et

8: t = t+1
9: end while

2.2 Optimization

We adopt a very similar optimization strategy to those of [7,8], outlined in
Algorithm 1, referred to below. Given current values of L and Θ, we use a
coordinate descent approach, alternating once between optimizing the discrete
labelling, L, and the continuous parameters, Θ, per algorithm iteration.

For the latter optimization (step 6), i.e. minimizing E(L,Θ) w.r.t. Θ, the
fixed assignments mean that the parameters of each primitive can be opti-
mized independently of each other and also of the regularization terms, using
Levenberg-Marquardt, as follows:

θk = argmin
θ

∑
i|li=k

Di(xi, θ). (8)

The discrete optimization (step 4), i.e. minimizing E(L,Θ) w.r.t. L, is achie-
ved through a series of α-expansion-contraction moves, described in the next
section, iterating through each label once (rather than until convergence) per
algorithm iteration, in the fixed order {1, ..,M, 0}.

There are two other model update steps per iteration, once at the start,
when new primitives are optionally added to the model (step 3), and once after
the assignment update, when primitives with no points assigned to them are
removed from the model (step 5). Adding primitives is achieved by selecting a
seed point from the input set at random, but favouring those with currently
high data costs, and locally fitting one primitive of each available type to a
neighbourhood of points (we use 20 here) around that point.

At the end of each iteration the energy, which is guaranteed to not increase, as
only steps 4 and 6 change the energy and neither can increase it, is recomputed
(step 7), and the algorithm is looped until convergence (step 2). In the case
where primitives are being added, the algorithm only stops when five iterations
in a row fail to decrease the energy.

Finally, we have two model initialization schemes (step 1). Both involve ini-
tializing all points as unassigned, s.t. li = 0, i = 1, .., N . However, the primitives,
Θ, can either be initialized as an empty set, or filled with a number of primitives
initialized in the same manner as those added in step 3, but with seed points
selected uniformly at random.
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3 Contraction moves

We introduce a new class of moves, called α-expansion-contraction, which gener-
alizes both α-expansion and α-expansion β-shrink moves. For every point whose
current label lci = α, it proposes a new label lpi . Importantly, the set of la-
bels Lp = (lpi )∀i|lci=α is allowed to have any configuration. The α-expansion-
contraction move space is therefore defined as

li =

{
α or lpi for lci = α (α-contraction)

α or lci otherwise (α-expansion)
. (9)

The move has two key properties, which can be seen by inspection of equa-
tions (2) and (9). Firstly, like α-expansion [20], given metric pairwise terms,
it can be solved optimally in polynomial time, since our move is equivalent to
an α-expansion on the labelling (lpi for lci =α, lci otherwise)Ni=1. Secondly, for any
choice of lpi , our move is guaranteed to have an equal or lower energy than that
of the equivalent (i.e. same α) α-expansion move, since the former’s move space
is a superset of the latter’s, and we find the optimal solution. Finally, we can see
that this class of move subsumes the α-expansion β-shrink class, where lpi = β
(i.e. the proposal labelling, Lp, must be homogeneous).

The motivation of α-expansion-contraction is to better enable the removal
of label α in one move, thereby reducing label cost. The removal of a label in a
single α-expansion or α-expansion β-shrink move can only happen by replacing
the label entirely with the α (or β) label. In contrast, α-expansion-contraction
has the potential to replace a label with any number of other labels in a single
move, benefiting situations where the optimal removal involves multiple labels.
However, it should be noted that α-expansion-contraction does not necessarily
propose the optimal removal labelling—finding this labelling is NP-hard, but
even computing an approximation would require a multi-label optimization using
an inner loop of α-expansion moves, which is not practical. Instead we propose
two heuristic methods for selecting these proposal labels, which we call variant I
and variant II, described below.

3.1 α-expansion-contraction: variant I

Here, each proposal label, lpi , is computed independently, by selecting the label
(excluding the current label, lci = α), with the lowest data cost given by equa-
tion (5). This variant allows the α label to be replaced with multiple labels.
This proposal is optimal when there are no MRF costs, i.e. λMRF = 0, therefore
intuitively we can expect this variant to perform better with lower λMRF.

Implementation details: To avoid either storing or recomputing the data costs
of every label for each point, i, we only store the current label’s data cost, dlii ,
and the lowest (or second lowest if the current label has the lowest) data cost,
d∗i , and recompute the data cost for the label α during each move. The label
of the currently stored d∗i is therefore used as lpi . However, due to changes in
primitive parameters, this label may not always strictly fulfil the description of
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lpi given above. Each d∗i is compared against the α label data cost after each
move, and updated if necessary.

Furthermore, in each α-expansion-contraction optimization, if lci 6= α and
Di(xi, θα) > Di(xi, θ0) + λMRF|Ni|V (0, α), where |Ni| is the number of neigh-
bours of the ith node, then that node is guaranteed to produce a lower energy
with the label 0 rather than the label α, regardless of the labels of other nodes,
therefore it is pruned from the optimization to save computation time.

3.2 α-expansion-contraction: variant II

Here, every proposal label lpi is set to the same value, β. This variant coin-
cides with an α-expansion β-shrink move [21], for which four choices of β were
suggested: α − 1, α + 1, random, or iterating over all labels. The first two are
meaningless in applications where labels have no intrinsic ordering, as with prim-
itive fitting, while the last has M2 iterations per loop, rather than the M of α-
expansion, making it computationally undesirable. Finally, with a large M but
only a few suitable primitives per point, random selection in our application is
like a shot in the dark. Instead we propose a new heuristic for selecting a value
for β that is sensible given our application: we histogram the labels lpi proposed
by variant I, and choose β as the label of the bin with most entries.

This variant proposes a homogeneous labelling. Since homogeneous labellings
are more likely when λMRF is high, we can intuitively expect this variant to
perform better with higher λMRF.

4 Evaluation

We evaluate our proposed framework on synthetic and real-world point cloud
datasets, fitting models consisting of the following three types of primitives:
planes, spheres and cylinders. The synthetic dataset, shown in figure 2, is gener-
ated by randomly sampling 50,000 points uniformly over the area of each of ten
meshes from the Princeton Shape Benchmark database [30], computing mesh
normals at each point, then adding Gaussian noise to both position and nor-
mals. In our quantitative evaluation, each synthetic point cloud is modelled three
times, using both variants of α-expansion-contraction in step 4 of Algorithm 1,
as well as α-expansion for comparison.

4.1 Comparison of initialization methods

In this experiment we evaluate our two approaches to initializing the algorithm:
starting with an empty set of primitives, and starting with a number of random
primitives. In contrast to the empty set initialization, we do not add primitives
during step 3 when starting with a number of primitives.

The plots in figure 4 compare the average energy values after convergence for
four different settings of λMRF and λLC. Dashed lines represent the final energies
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of the empty-set initialization approaches, the α-expansion version of which is
used to normalize all other energy values.

A first observation is that the final energies obtained using the two proposed
α-expansion-contraction variants are, on average, less than or equal to the α-
expansion result in all four cases. The improvement is particularly significant
in the case of high λLC and low λMRF (fig. 4(d)); for these settings the ability
to efficiently remove labels is important in reducing energy. Secondly, for all
settings of λMRF and λLC, starting with a sufficiently large number of primitives
leads to a lower energy, on average, than when starting with zero primitives. In
our experiments the energy decrease saturates at around M = 3200; we use this
test case for all further experiments on this dataset.

4.2 Comparison over different regularization weights

In the second experiment we compare the algorithms in terms of final energy
after convergence over a range of values of the regularization weights, λMRF and
λLC. Each row of figure 6 compares two algorithms by showing the percentage
reduction in final energy. Positive numbers correspond to a lower energy solution
of the first method.

Shown in the first and second rows are the improvements by α-expansion-
contraction over standard α-expansion. The average energy of both contraction
variants is less than or equal to the value obtained by α-expansion (first col-
umn), and the improvement is greatest for lower values of λMRF, where the
homogeneous labelling assumptions inherent in the α-expansion moves are least
true. The second and third columns show the minimum and maximum values
of energy decrease over the ten point clouds. Both contraction variants gener-
ally outperform the standard α-expansion approach, with only a few negative
values, corresponding to low values of λLC. By contrast, the maximum improve-
ment over standard α-expansion can be significant, in some cases exceeding a
50% energy reduction.

The difference between variant I and variant II of α-expansion-contraction,
shown in the third row, is less pronounced but it is still evident that for most
scenarios, particularly for low values of λMRF, variant I leads to lower energies
on average. Important also is that, for larger values of λMRF, variant I does not
perform worse on average than variant II, which one might expect. This may be
due to the fact that variant I incorporates both homogeneous and inhomogeneous
regions. The result indicates that it is preferable to use the more general variant I,
which does not coincide with any previously introduced moves, in all cases.

The number of primitives at convergence greatly depends on the parame-
ters used; final primitive counts range from 50 up to 2500 for small λMRF and
λLC. However, the final number of primitives produced by the α-expansion-
contraction variants is always less than or equal to that of α-expansion, with
decreases of up to 40% with variant II and up to 60% with variant I. Figure 5
shows that these simpler models (i.e. reduced label costs) do not increase the
point-to-primitive distances (i.e. data cost) much; in fact with variant II they
decrease compared to α-expansion, as does the MRF cost.
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Figure 7(a) qualitatively shows improved fitting on the Microscope point
cloud used in the experiments. It can be seen that α-expansion-contraction leads
to a lower number of primitives, with an improved segmentation of the dominant
surfaces compared to standard α-expansion.

4.3 Convergence behaviour

In this experiment the convergence and runtime performance of the three meth-
ods is compared. Figure 3 shows two cases with fixed λMRF, but low and high
λLC values. Each graph plots the energy versus CPU time for all three algo-
rithms on each of the ten point clouds. Both variants of α-expansion-contraction
converge more slowly, but to lower energies than standard α-expansion, as well
as achieving lower energies in the time that α-expansion takes to converge. This
is particularly visible in the case of large λLC. Another observation is that in
most cases variant I of α-expansion-contraction converges faster and to a better
solution than variant II.

4.4 Experiments on multi-view reconstruction data

We apply the algorithm to three point clouds, Sculpture, Forum and Temple,
obtained with a multi-view reconstruction pipeline [31]. For these datasets, all
methods are initialized with the output of an efficient, RANSAC-based primitive
fitting method [5], but new primitives are still added each iteration.

The model fitting results (fig. 7(c–d)) show qualitative improvements of the
proposed method compared to α-expansion. Using α-expansion produces many
more primitives than α-expansion-contraction variant I, a fact that is more ob-
vious in the case of the Sculpture and Temple datasets (b,d), where curved
surfaces are more frequently modelled as fragments of planes by α-expansion.
For the Temple point cloud, which contains more that 2.6M points, α-expansion-
contraction variant I produced an energy 20% lower than α-expansion, using 31%
fewer primitives, but converging in 510 iterations compared to the latter’s 140.
Each algorithm iteration took on average over 700 seconds for both approaches,
with 99% of that time being spent on the assignment updates (step 4 of Algo-
rithm 1); however, we do not use any of the available approaches for speeding
up α-expansion (and consequently α-expansion-contraction).

4.5 Experiments on stereo

α-expansion-contraction moves can replace α-expansion moves in any application
with a multi-label energy consisting of metric pairwise terms. In computer vision
the majority of such applications do not include label costs, therefore we also
compare our new moves with α-expansion on a standard energy minimization
dataset [19] which does not include such costs. However, we only use the tests
which have metric2 pairwise terms—stereo. The results, shown in table 1, suggest

2 We have not investigated the possibility of truncating non-submodular pairwise
terms whilst maintaining convergence properties, e.g . as in [21, §4.2].
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Fig. 2: Synth-
etic dataset.
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Fig. 3: Energy vs. CPU time. Graphs showing the conver-
gence behaviour of the different algorithms on ten point clouds,
for two different values of λLC. The graphs start at the energy
values after the first iteration.
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(dashed lines), and starting with different numbers of primitives (solid lines).
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Tsukuba Venus Teddy

Variant I
370827 3011962 1343467
(4.6s) (12.9s) (47.8s)

Variant II
370812 3012195 1343530

(4.8s) (11.6s) (43.5s)

α-expansion
370812 3011945 1343533
(4.8s) (12.4s) (41.7s)

Table 1: Stereo. Energy and time
results for evaluation on a stan-
dard stereo dataset [19].
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Fig. 6: Comparison of final energies. Each row of grids shows the percentage
reduction in energy of one method vs. another, over a range values for λMRF

and λLC. Each column shows, from left to right, the average, minimum and
maximum reductions over the ten datasets.

that little is to be gained by using either variant of α-expansion-contraction (and
therefore also α-expansion β-shrink) on such applications. This is corroborated
by the λLC = 0 rows in figure 6.

5 Conclusion

This paper has introduced the class of α-expansion-contraction moves, a gen-
eralization of α-expansion moves, for multi-label graph cuts optimization, and
two heuristic methods for generating proposal labellings. We demonstrated this
approach in the context of fitting geometric primitive models to 3D point clouds.
In experiments on synthetic data, the new moves were shown to result in sig-
nificantly lower energy solutions, particularly for large weights of the LC term.
Results on problems without label costs were less conclusive, suggesting that
these moves are of particular benefit when applied to model fitting problems
with label costs, where the proposed moves facilitate the removal of instances,
thereby reducing model complexity. The scalability of the algorithm was demon-
strated by applying it to real-world point cloud datasets with millions of points.
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Fig. 7: Primitive fitting results. Qualitative results on (a) the synthetic
Microscope dataset, (b) the Sculpture dataset, (c) the Forum dataset, and
(d) the Temple dataset, showing colour coded primitives, visualized using ori-
ented patches at each point, fitted using α-expansion (middle) and α-expansion-
contraction variant I (right).
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