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Abstract

In applying the Hough transform to the problem of 3D shape recognition and registra-
tion, we develop two new and powerful improvements to this popular inference method.
The first, intrinsic Hough, solves the problem of exponential memory requirements of
the standard Hough transform by exploiting the sparsity of the Hough space. The sec-
ond, minimum-entropy Hough, explains away incorrect votes, substantially reducing the
number of modes in the posterior distribution of class and pose, and improving preci-
sion. Our experiments demonstrate that these contributions make the Hough transform
not only tractable but also highly accurate for our example application. Both contribu-
tions can be applied to other applications that already use the standard Hough transform,
as well as making it feasible and competitive for potentially many more.
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(a) Standard Hough (b) Max. Hough (c) Min.-entropy Hough

Figure 1: Demisting the Hough transform. Posterior distributions over translation and ten
object classes (six of which are present in the scene), with scale and rotation marginalized
out, for the three types of Hough transform tested: (a) the standard Hough transform, (b) the
max. Hough transform and (c) the minimum-entropy Hough transform.

1 Introduction
The Hough transform [7], named after Hough’s 1962 patent [10] describing a method for
detecting lines in images, has since been generalized to detecting, as well as recognizing,
many other objects: parameterized curves [7], arbitrary 2D shapes [2], cars [9, 15], pedestri-
ans [3, 9], hands [19] and 3D shapes [12, 20, 24], to name but a few. This popularity stems
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from the simplicity and generality of the first step of the Hough transform—the conversion
of features, found in the data space, into sets of votes in a Hough space, parameterized by
the pose of the object(s) to be found. Various different approaches to learning this feature-
to-vote conversion function have been proposed, including the implicit shape model [15] and
Hough forests [9, 19].

The second stage of the Hough transform simply sums the likelihoods of the votes at
each location in Hough space, then selects the modes. One problem with this step is that
the summation can create modes where there are only a few outlier votes. Indeed, as stated
in [3], no probabilistic interpretation that fully explains this approach (since likelihoods of
independent variables should be multiplied, not added) has yet been provided. A second
problem is that, given a required accuracy, the size of the Hough space is exponential in its
dimensionality.

The application we are concerned with, object recognition and registration (R&R) from
3D geometry (here, point clouds), suffers significantly from both these problems. The Hough
space, at 8D (one dimension for class, three for rotation, three for translation and one for
scale), is to our knowledge the largest to which the Hough transform has been applied,
and the feature-to-vote conversion generates a high proportion of incorrect votes, creating
a “mist” of object likelihood throughout that space, as shown in figure 1(a).

In the face of this adversity, we have developed two important contributions which enable
inference on this task, and potentially many others, using the Hough transform to be both
feasible and accurate:

• We introduce the intrinsic Hough transform, which substantially reduces memory and
computational requirements in applications with a high dimensional Hough space.

• We introduce the minimum-entropy Hough transform, which greatly improves the pre-
cision and robustness of the Hough transform.

These extensions of the Hough transform are not task specific; they can be applied, either
together or independently, to any application that does or is able to use the standard Hough
transform.

The rest of this paper is organized as follows: The next section describes inference using
the Hough transform, and briefly reviews the literature relevant to our contributions. In §3
we describe our new inference methods. The section following that describes and discusses
our experiments. Finally, we conclude in §5.

2 Background

2.1 3D shape recognition and registration
The implicit shape model of Leibe et al. [14, 15] pioneered the use of the Hough transform
for object recognition in 2D images. This approach has since been applied to object recog-
nition in 3D geometric data [12], and extended to object registration [20, 24]. For the dual
problem of R&R in 3D, the Hough space is either 7D (if scale is known) [24] or 8D [20].

The feature extraction stages of these methods follow the same pipeline: features are
detected at a given scale and position; a canonical orientation of the feature is computed; a
descriptor for the feature is computed. The votes are then computed by matching features in
the test data with features from training data with ground truth class and pose, either directly
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(i.e. a nearest neighbour search) [20], or via a codebook created by clustering the feature
descriptors [12, 15, 24].

In this work we will be using the feature-to-vote conversion process of Pham et al. [20]
as an off-the-shelf method, since our contributions lie in the second stage of the Hough
transform. It is this process that generates a high proportion of incorrect votes, amongst
which the correct votes need to be found.

2.2 The Hough transform
We consider the second stage of the Hough transform to be a discriminative model of the
posterior distribution of an object’s location, y, in a Hough space, H, which is the space
of all object poses (usually real) and, in the case of object recognition tasks, object classes
(discrete). The model is a non-parametric kernel density estimate based on the votes, X =
{xi j}∀i, j, cast inH by N features, thus

p(y|X,ω,θ) =
N

∑
i=1

ωi

Ji

∑
j=1

θi jK(xi j,y), (1)

where Ji is the number of votes generated by the ith feature, K(·, ·) is a density kernel in
Hough space, andω= {ωi}N

i=1 and θ= {θi j}∀i, j are feature and vote weights respectively,
s.t. ωi,θi j ≥ 0, ∀i, j, ∑

N
i=1 ωi = 1, and

Ji

∑
j=1

θi j = 1, ∀i ∈ {1, ..,N}. (2)

For example, in the original Hough transform used for line detection [7], the features are
edgels, votes are generated for a discrete set of lines (parameterized by angle) passing
through each edgel, the kernel, K(·, ·), returns 1 for the nearest point in the discretized
Hough space to the input vote, 0 otherwise, and the weights, ω and θ, are set to uniform
distributions. Recently a method has been proposed for learning a priori more discriminative
weights [18], for object detection.

The final stage of the Hough transform involves finding, using non-maxima suppression,
the modes of this distribution whose probabilities are above a certain threshold value, τ .

2.2.1 Computational feasibility

Finding the modes in H involves sampling that space, the volume of which increases expo-
nentially with its dimensionality, d. Several approaches have been proposed to reduce this
burden, which we categorize as one of approximate, hierarchical, irregular or mode-seeking.

Approximate methods use reduced-dimensionality approximations of the full Hough
space to find modes. For example, given a 6D pose (translation & rotation), Fisher et al. [8]
quantize translations and rotations in two separate 3D arrays (peak entries in both arrays
indicate an object, but multiple objects create ambiguities), while Tombari & Di Stefano
[24] find modes over translation only, then compute an average rotation for each mode.
Geometric hashing techniques, e.g. [13], also fall into this category.

Hierarchical approaches, such as the fast [16] and adaptive [11] Hough transforms,
sample the space in a coarse-to-fine manner, exploiting the sparsity of some areas, though
their complexity is still exponential in d.
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Irregular methods do not sample the Hough space regularly, but rather sample only
where objects are likely to be detected, again exploiting potential sparsity inH. For example,
the combinatorial [4] and randomized [27] Hough transforms generate lists of sampling
locations, the former for all lines (in line dection) joining pairs of edgels in confined regions,
the latter for curves (in curve detection) defined uniquely by random sets of edgels. Both
these approaches are task specific, whereas the intrinsic Hough transform introduced here,
which also falls into this category, is not.

Mode-seeking methods find modes in H through iterative optimization. Mean shift [6]
is the most commonly used approach, the complexity of which is O(nd2), where n = ∑

N
i=1 Ji

(the total number of votes). It has successfully been applied to an 8D Hough space [20].
However, it needs to be initialized in many, perhaps O(n), locations, making the total com-
plexity O(n2d2), and is not guaranteed to find every mode. Two extensions of this approach,
though generally applied to clustering rather than mode seeking, are medoid shift [23] and
quick shift [25].

These approaches can also be combined. For example, modes found in a coarse sampling
ofH can be refined using mean shift [15], an approach we employ here.

2.2.2 Explaining away votes

The summing of votes in the Hough transform enables incorrect votes to generate significant
modes in H. Recently Barinova et al. [3] introduced an alternative vote-based inference
method which correctly (in a probabilistic sense) multiplies the vote likelihoods. In addition,
they novelly exploit the assumption that only one vote cast by each feature is correct,1 with the
result that correct votes are able to explain away incorrect votes from the same feature for the
first time. They demonstrated state-of-the-art results on line and pedestrian detection using
this method. We exploit this same assumption in our minimum-entropy Hough transform,
with similar results.

3 Our framework
This section describes our improvements to the Hough transform. In §3.1 we introduce the
intrinsic Hough transform, which overcomes the high memory requirements of the standard
Hough transform with high-dimensional Hough spaces. In §3.2 & 3.3 we introduce two
methods which exploit the assumption that only one vote per feature is correct.

3.1 The intrinsic Hough transform
As discussed in §2.2, high-dimensional Hough spaces require infeasible amounts of memory
to sample regularly. However, we note that while the Hough space increases exponentially
with its dimensionality, the number of votes generated in applications using the Hough trans-
form generally do not, implying that higher dimensional Hough spaces are often sparser. We
exploit this sparsity by sampling the Hough space only at locations where the probability
(given by equation (1)) is likely to be non-zero—at the locations of the votes themselves.
Since the votes define the distribution, therefore are intrinsic to it, we call this approach the
intrinsic Hough transform.

1This assumption is empirically valid for applications in which each feature is generated by a single object,
which is usually the case.
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While similiar in some respects to intrinsic mode-seeking algorithms [23, 25], the intrin-
sic Hough transform does not seek modes through iterative updates. Rather, the modes of
the distribution are detected using non-maxima suppression, as per the standard Hough trans-
form; here, a sample location, y, is classified a mode if no other sample location, z, within
a certain distance, s.t. K(y,z)> γ , has a higher probability. As a final step to improve accu-
racy, the location of each mode found is updated with one step of mean shift. The memory
and computational requirements of this approach are O(n) and O(n2d2) respectively.

3.2 The maximum Hough transform

If, as in [3], we assume that only one vote per feature is correct, a simple way of exploiting
this is to further assume that the correct vote is the one that best explains the location, y, in
question. This suggests a different formulation of equation (1), which we call the maximum
Hough transform:

pmax(y|X,ω,θ) =
N

∑
i=1

ωi
Jimax

j=1
θi jK(xi j,y). (3)

The process of detecting objects from this distribution is then identical to the standard or
intrinsic Hough transforms. Since the method described below supersedes this method, we
include it here purely for interest and completeness.

3.3 The minimum-entropy Hough transform

To better exploit the assumption that only one vote per feature is correct, a vote that is
believed to be correct should explain away the other votes from that feature. This suggests
that, rather than being given θ a priori, it would be beneficial to optimize over its possible
values, giving those votes which agree with votes from other features more weight than those
which do not.

One way of achieving this is by minimizing the information entropy2 of p(y|X,ω,θ)
w.r.t. θ. A similar approach, but minimizing entropy w.r.t. some parameters of the vote gen-
eration process, has already been used for lens distortion calibration [21]. A lower entropy
distribution contains less information, making it more peaky and hence having more votes in
agreement. Since information in Hough space is the location of objects, minimizing entropy
constrains features to be generated by as few objects as possible. This can be viewed as
enforcing Occam’s razor.

Since computing entropy involves an integration over Hough space (here, very large), we
use importance sampling [17, §29.2] to make this integration tractable; as with the intrinsic
Hough transform, we sample the Hough space at the locations of all the votes. The value of
θ is therefore given as

θ= argmin
θ

−
N

∑
i=1

Ji

∑
j=1

p(xi j|X,ω,θ)

q(xi j)
ln p(xi j|X,ω,θ) (4)

where q(·) is the (unknown) sampling distribution from which the votes are drawn. Once
this optimization (described below) is done, the estimated θ is applied to equation (1), and

2Specifically we use the Shannon entropy [22], H = E[− ln p(x)] =−
∫

p(x) ln p(x) dx.
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inference continues as per the standard (or intrinsic) Hough transform. We call this approach
the minimum-entropy Hough transform.3

3.3.1 Optimization framework

Since p(y|X,ω,θ) is a linear function of θ, and −x lnx is concave, as is a sum of concave
functions, the cost function of equation (4) is concave. Its minimum therefore lies at an
extremum of the parameter space, which is constrained by equation (2), such that the optimal
value of θi = {θi j}Ji

j=1 (i.e. the vector of feature i’s vote weights) must be an all 0 vector,
except for one 1. The search space for each θi is therefore a discrete set of Ji possible
vectors, making the total number of possible solutions ∏

N
i=1 Ji. It should be noted that this

search space is not uni-modal—for example, if there are only two features and they each
identically generate two votes, one for location y and one for location z, then both y and z
will be modes. Furthermore, as the search space is exponential in the number of features, an
exhaustive search is infeasible for all but the smallest problems.

We therefore use a local approach, iterated conditional modes (ICM) [5], to quickly find
a local minimum of this optimization problem. This involves updating the vote weights of
each feature in turn, by minimizing equation (4) conditioned on the current weights of all
other votes, and repeating this process until convergence. The correct update equation for
the vote weights of a feature f is as follows:

p f k(y|X,ω,θ) = ω f K(x f k,y)+ ∑
∀i6= f

ωi

Ji

∑
j=1

θi jK(xi j,y), (5)

k =
J f

argmin
k=1

−
N

∑
i=1

Ji

∑
j=1

p f k(xi j|X,ω,θ)

q(xi j)
ln p f k(xi j|X,ω,θ), (6)

θ f k = 1, θ f j = 0, ∀ j 6= k. (7)

However, since this update not only involves q(·), which is unknown, but is also relatively
costly to compute, we replace it with a simpler proxy which in practice performs a similar
job:

k =
J f

argmax
k=1

p f k(x f k|X,ω,θ). (8)

Since the optimization is local, a good initialization of θ is key to reaching a good minimum.
In our experiments we started at the value of θ used in the standard Hough transform, then
applied the following update to each vote weight simultaneously:

θik =
pik(xik|X,ω,θ)

∑
Ji
j=1 pi j(xi j|X,ω,θ)

, (9)

iterating this five times before starting ICM. Initially updating weights softly, i.e. not fixing
them to 0 or 1, and synchronously, avoiding ordering bias, in this way helped to avoid falling
into a poor local minimum early on, thus improving the quality of solution found.

3Strictly speaking, the minimum-entropy Hough transform is not a transform, because the probability of each
location in Hough space cannot be computed independently.
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(a) Real object (b) Point cloud from MVS (d) Detected features (e) Computed votes (f) CAD model(c) Volume iso-surfaces

Figure 2: The application: 3D-shape-based object R&R (framework and figure from [20]).
(a) Real object, fabricated from a CAD model. (b) Point cloud extracted using a multi-view
stereo (MVS) system [26]. (c) Iso-surfaces of the scalar volume computed from the points.
(d) Features (with position, scale and orientation) detected in the volume. (e) Votes for the
object centre, based on detected features matched with a library of learnt features. (f) The
registered CAD model.

4 Experiments
4.1 Setup
For our test application, 3D shape R&R, we use the same framework as [20], outlined in
figure 2. In addition, we use the same test data (the ten test object classes used are shown in
figure 4), evaluation framework, density kernel,4 K(·, ·), and bandwidth parameters. Briefly,
experiments are carried out on 1000 point clouds, each containing one object, with ground
truth class and pose. Further details can be found in [20]; the evaluation data can be found
online [1].

4.2 Methods
As well as evaluating the relative performance of the three Hough transforms introduced
in §3.1, 3.2 & 3.3, we compare them with the SRT mean shift method of [20] (henceforth
referred to as “mean shift”), and the inference method of Barinova et al. [3] (here referred
to as BLK, after the authors, for short). Apart from mean shift, the methods all use the
intrinsic Hough transform to make sampling H feasible. For the mean shift refinement step
of the intrinsic Hough transform, we use the closed-form mean given in [20], despite our
slightly different density kernel. However, we do not refine the detections of BLK because
their probability distribution is not amenable to this, since it does not sum the votes. The
likelihood function used in our implementation of BLK is the same kernel density function
used in our three new methods. We note that the parameters of this kernel were learned
in [20] specifically for Hough-based inference, therefore might not be optimal for BLK.
Parameter values used for the various methods are summarized in table 1.

4.3 Results
4.3.1 Quantitative results

Quantitative results mirroring the analysis of [20] are given in tables 2 & 3 and figure 3.
There is a small increase in performance in both registration and recognition moving from
mean shift to intrinsic Hough, which is most likely due to modes being missed by mean
shift. There is a larger increase in performance moving to maximum Hough, which gets the
best registration score in 4/10 classes as well as a 17% jump in recognition rate (over mean

4In fact our density kernel is slightly different: we use a symmetric version of dSRT(X,Y) (their notation),
changing the denominator of [20, equation (7)] to

√
s(X)s(Y). K(y,z) = 0 if y and z specify different classes.
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σs σr σt γ λ

a–e a–e a–e b–d e
0.0694 0.12 0.12 exp(−8) 10

Table 1: Parameter values for the inference methods tested: (a) mean shift, (b) intrinsic
Hough, (c) max. Hough, (d) minimum-entropy Hough, (e) the method of Barinova et al. [3].

shift), indicating that, in this application, several votes from the same feature can vote for
the same location, generating false detections. Minimum-entropy Hough performs the best,
showing a significantly improved registration rate, with top scores on 5/10 classes, and a
hugely improved recognition rate over mean shift (a 96% reduction in misclassifications);
only 1.5% of objects are left unrecognized, the majority of those in the car class. The BLK
method has a similarly impressive recognition rate, but slightly lower registration rate. To
see if this was due to the mean shift refinement of the other methods, we refined the modes
of the BLK method by switching to summing the votes and doing one step of mean shift; the
results (BLK + MS in table 2) show an improvement in registration rate, though still short of
that of minimum-entropy Hough, as well a small increase in recognition rate.

However, because these results only reflect the best detection per test, they do not tell
the whole story; we do not know how many other (incorrect) detections had competitive
weights. To see this, we generated the precision-recall curves shown in figure 5, by varying
the detection threshold, τ (or λ for BLK [3]). A correct detection in this test required the
class and pose to be correct simultaneously, and allowed only one correct detection per
test. The curves show that precision remains high as recall increases for the minimum-
entropy Hough transform and BLK method (more so with our method), which are both
able to explain away incorrect votes, while it drops off rapidly with recall for the other
methods, indicating that the latter methods suffer from greater ambiguity as to which modes
correspond to real objects. Interestingly, the minimum-entropy Hough transform has the
lowest maximum recall rate (around 0.76), which we propose is due to some correct modes
being “explained away” in the optimization of equation (4). Since our optimization strategy
finds only a local minimum we cannot be sure whether this effect is due to the objective
function or the optimization strategy.

In terms of computation time (table 2), all methods tested were of a similar speed. How-
ever, we noticed that the speed of BLK was dependent on the value of λ , its detection thresh-
old, and therefore equally the number of objects in the scene, unlike the other methods.

4.3.2 Qualitative results

The benefit of explaining away incorrect votes is demonstrated in figure 1. While the stan-
dard Hough transform shows a great deal of ambiguity as to where and how many objects
there are, which appears to get worse with the maximum Hough transform, the minimum-
entropy Hough transform is able to clear away the “mist” of incorrect votes, leaving four
distinct modes corresponding to the objects present; there are some other modes, but these
are much less significant, corroborating the results seen in figure 5.

The benefit of having correct and clearly defined modes is demonstrated in figure 6, using
the same point cloud as in figure 1, a challenging dataset containing three pairs of touching
objects. Both minimum-entropy Hough and BLK find all six objects in the top six detections
(though both mis-register the piston lying at a shallow angle), whereas the other methods
find not only incorrect objects, but also multiple instances of correct objects (particularly the
piston on the cog).
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Mean shift Intrinsic H. Max. H. Min.-ent. H. BLK BLK + MS
Recog. 64.9% 67.6% 81.9% 98.5% 98.1% 98.3%
Regist. 68.3% 68.2% 72.5% 74.6% 72.5% 73.1%
Time 1.62s 1.53s 1.57s 1.59s 1.62s 1.65s

Table 2: Quantitative results for the inference methods tested.

be
ar

in
g

bl
oc

k

br
ac

ke
t

ca
r

co
g

fla
ng

e

kn
ob

pi
pe

pi
st

on
1

pi
st

on
2

Mean shift 77 13 95 75 100 41 88 86 44 64
Intrinsic Hough 77 15 96 76 100 35 86 86 44 67

Max. Hough 80 21 100 79 100 34 91 87 53 80
Minimum-entropy Hough 83 20 98 91 100 36 91 89 54 84
Barinova et al. (BLK) [3] 81 21 97 91 100 34 77 90 48 86

Table 3: Registration rate per class (%) for the five inference methods tested.
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(a) Mean shift (b) Intrinsic H. (c) Max. H. (d) Min.-ent. H. (e) BLK
Figure 3: Confusion matrices for the five inference methods tested.

Figure 4: Test objects. CAD models for the
10 test object classes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

o
n

 

 

Mean shift

Intrinsic Hough

Max. Hough

Min.−entropy

Barinova et al.

Figure 5: Precision-recall curves for the five
inference methods tested.

(a) Mean shift (b) Intrinsic H. (c) Max. H. (d) Min.-ent. H. (e) BLK
Figure 6: Qualitative results for the five inference methods tested, showing the first 6 ob-
jects (in order of decreasing weight) detected by each method in a point cloud containing 6
objects. Only minimum-entropy Hough (d) and the method of Barinova et al. [3] (e) find all
the objects.
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5 Conclusion
We have introduced two key extensions of the Hough transform, which can be applied to any
approach using the Hough transform. The first, the intrinsic Hough transform, changes the
memory requirements of the Hough transform from O(kd), (k > 1) to O(n), making it feasi-
ble for high-dimensional Hough spaces such as that of our 3D shape R&R application. The
second, the minimum-entropy Hough transform, was shown to significantly increase detec-
tion precision over mean shift on our task. We also showed that it marginally outperformed
the probabilistic method of Barinova et al. [3], as well as benefitting from a computation time
that is independent of the number of objects in the scene, and allowing the straighforward
refinement of modes using mean shift. However, since the kernel density parameters pro-
vided were optimized for Hough-based approaches and not for BLK, the real “take home”
message of this paper is that the assumption that only one vote generated by each feature is
correct is a powerful constraint in vote-based frameworks, which can dramatically improve
inference by “clearing the mist” of incorrect votes.

References
[1] Toshiba CAD model point clouds dataset. http://www.toshiba-europe.

com/research/crl/cvg/stereo_points.html.

[2] D. H. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Pattern
Recognition, 13(2):111–122, 1981.

[3] O. Barinova, V. Lempitsky, and P. Kohli. On detection of multiple object instances
using Hough transforms. In Proceedings of CVPR, 2010.

[4] D. Ben-Tzvi and M. B. Sandler. A combinatorial Hough transform. Pattern Recognition
Letters, 11(3):167–174, 1990.

[5] J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical
Society, Series B, 48(3):259–302, 1986.

[6] Y. Cheng. Mean shift, mode seeking, and clustering. TPAMI, 17(8):790–799, 1995.

[7] R. O. Duda and P. E. Hart. Use of the Hough transformation to detect lines and curves
in pictures. Commun. ACM, 15:11–15, 1972.

[8] A. Fisher, R. B. Fisher, C. Robertson, and N. Werghi. Finding surface correspondence
for object recognition and registration using pairwise geometric histograms. In Pro-
ceedings of ECCV, pages 674–686, 1998.

[9] J. Gall and V. Lempitsky. Class-specific Hough forests for object detection. In Pro-
ceedings of CVPR, pages 1022–1029, 2009.

[10] P. V. C. Hough. Method and means for recognizing complex patterns. U.S. Patent
3,069,654, Dec. 1962.

[11] J. Illingworth and J. Kittler. The adaptive Hough transform. TPAMI, 9(5):690–698,
1987.

Citation
Citation
{Barinova, Lempitsky, and Kohli} 2010

http://www.toshiba-europe.com/research/crl/cvg/stereo_points.html
http://www.toshiba-europe.com/research/crl/cvg/stereo_points.html


WOODFORD ET AL.: DEMISTING THE HOUGH TRANSFORM FOR 3D SHAPE R&R 11

[12] J. Knopp, M. Prasad, G. Willems, R. Timofte, and L. Van Gool. Hough transform and
3D SURF for robust three dimensional classification. In Proceedings of ECCV, pages
589–602, 2010.

[13] Y. Lamdan and H. Wolfson. Geometric hashing: A general and efficient model-based
recognition scheme. In Proceedings of ICCV, pages 238–249, 1988.

[14] B. Leibe, A. Leonardis, and B. Schiele. Combined object categorization and segmen-
tation with an implicit shape model. In ECCV Workshop on Statistical Learning in
Computer Vision, 2004.

[15] B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with interleaved cate-
gorization and segmentation. International Journal of Computer Vision, 77(1-3):259–
289, 2008.

[16] H. Li, M. A. Lavin, and R. J. Le Master. Fast Hough transform: A hierarchical ap-
proach. Computer Vision, Graphics, and Image Processing, 36(2-3):139–161, 1986.

[17] D. J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge
University Press, 2003.

[18] S. Maji and J. Malik. Object detection using a max-margin Hough transform. In
Proceedings of CVPR, 2009.

[19] R. Okada. Discriminative generalized Hough transform for object detection. In Pro-
ceedings of ICCV, pages 2000–2005, 2009.

[20] M.-T. Pham, O. J. Woodford, F. Perbet, A. Maki, B. Stenger, and R. Cipolla. A new
distance for scale-invariant 3D shape recognition and registration. In Proceedings of
ICCV, 2011.

[21] E. Rosten and R. Loveland. Camera distortion self-calibration using the plumb-line
constraint and minimal Hough entropy. Machine Vision and Applications, October
2009.

[22] C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27:379–423, 623–656, 1948.

[23] Y. A. Sheikh, E. A. Khan, and T. Kanade. Mode-seeking by medoidshifts. In Proceed-
ings of ICCV, 2007.

[24] F. Tombari and L. Di Stefano. Object recognition in 3D scenes with occlusions and
clutter by Hough voting. In Proceedings of PSIVT, pages 349–355, 2010.

[25] A. Vedaldi and S. Soatto. Quick shift and kernel methods for mode seeking. In Pro-
ceedings of ECCV, pages 705–718, 2008.

[26] G. Vogiatzis and C. Hernández. Video-based, real-time multi view stereo. Image and
Vision Computing, 29(7):434–441, 2011.

[27] L. Xu, E. Oja, and P. Kultanen. A new curve detection method: Randomized Hough
transform (RHT). Pattern Recognition Letters, 11(5):331–338, 1990.


