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Abstract. This paper presents a learning based approach to tracking
articulated human body motion from a single camera. In order to ad-
dress the problem of pose ambiguity, a one-to-many mapping from image
features to state space is learned using a set of relevance vector ma-
chines, extended to handle multivariate outputs. The image features are
Hausdorff matching scores obtained by matching different shape tem-
plates to the image, where the multivariate relevance vector machines
(MVRVM) select a sparse set of these templates. We demonstrate that
these Hausdorff features reduce the estimation error in clutter compared
to shape-context histograms. The method is applied to the pose esti-
mation problem from a single input frame, and is embedded within a
probabilistic tracking framework to include temporal information. We
apply the algorithm to 3D hand tracking and full human body tracking.

1 Introduction

This paper considers the problem of estimating the 3D pose of an articulated
object such as the human body from a single view. This problem is difficult
due to the large number of degrees of freedom and the inherent ambiguities
that arise when projecting a 3D structure into the 2D image [5, 9]. In generative
methods for tracking, the pose is estimated using a 3D geometric model and a
likelihood function that evaluates different pose estimates. For example, various
algorithms based on particle filtering have been proposed for human body or
hand tracking [7, 15, 17, 26]. However, in order to track the motion of the full
body or the hand, a large number of particles and a strong dynamic model are
required.

More importantly, in order to build a practical system, the initialization task
needs to be solved. This can be seen as an multi-object recognition problem,
where recognizing a single object corresponds to recognizing the articulated ob-
ject in a particular pose. Once this problem is solved, temporal information can
be used to smooth motion and resolve potential pose ambiguities. This divides
the continuous pose estimation task into two distinct problems: (1) estimate a
distribution of possible configurations from a single frame, (2) combine frame-
by-frame estimates to obtain smooth trajectories.

One approach to pose estimation is to generate a large database of examples
from a 3D model and use efficient techniques to classify the current input image,



2

(a) (b)

Fig. 1. (a) Multiple mapping functions. Given a single view, the mapping from
image features to pose is inherently one-to-many. Mutually exclusive regions in state
space can correspond to overlapping regions in feature space. This ambiguity can be
resolved by learning several mapping functions from the feature space to different regions
of the state space. (b) Feature extraction. The features are obtained from matching
costs (Hausdorff fractions) of shape templates to the edge map. These costs are used
for creating the basis function vector φHD.

e.g. using hierarchical search [18] or hashing techniques [14]. The main problem
in this approach, however, is the very large number of templates required to
represent the pose space. The number of templates depends on the range of
possible motion and required accuracy, and can be in the order of hundreds of
thousands of templates [14]. Only a fraction of the templates is searched for each
query image, however all templates need to be stored.

The method for hand pose estimation from a single image by Rosales et al.

addressed some of these issues [13]. Image features were directly mapped to likely
hand poses using a set of specialized mappings. A 3D model was projected into
the image in these hypothesized poses and evaluated using an image based cost
function. The features used were low-dimensional vectors of silhouette shape
moments, which are often not discriminative enough for precise pose estimation.

Agarwal and Triggs proposed a method for selecting relevant features using
RVM regression [1]. The used image features were shape-contexts [4] of silhou-
ette points. Pose estimation was formulated as a one-to-one mapping from the
feature space to pose space. This mapping required about 10% of the training
examples. The method was further extended to include dynamic information
by joint regression with respect to two variables, the feature vector and a pre-
dicted state obtained with a dynamic model [2]. There are two concerns with
this approach. Firstly, features from a single view, such as silhouettes, are often
not powerful enough to solve the pose ambiguity problem. The mapping from
silhouette features to state space is inherently one-to-many, as similar features
can be generated by regions in the parameter space that are far apart, see fig-
ure 1(a). Hence it is important to maintain multiple hypotheses over time. The
second concern is that shape-context features have been shown to be sensitive



3

to background clutter [20] and hence a relatively clean silhouette is needed as
input. In this paper we propose the use of robust measures that are based on
edge-based template matching. Edge-based matching has been used in a number
of pose estimation and tracking algorithms [8, 12, 18, 23].

In this paper the pose estimation problem from template matching is for-
mulated as learning one-to-many mapping functions that map from the feature
space to the state space. The features are Hausdorff matching scores, which are
obtained by matching a set of shape templates to the edge map of the input im-
age, see figure 1(b). A set of RVMmapping functions is then learned to map these
scores to different state-space regions to handle pose ambiguity, see figure 1(a).
Each mapping function achieves sparsity by selecting only a small fraction of the
total number of templates. However, each RVM function will select a different
set of templates. This work is closely related to the work of Sminchisescu et
al. [16] and Agarwal et al. [3]. Both follow a mixture of experts [11] approach to
learn a number of mapping functions (or experts). A gating function is learned
for each mapping function during training, and these gating functions are then
used to assign the input to one or many mapping functions during the inference
stage. In contrast, we use likelihood estimation from projecting the 3D-model to
verify the output of each mapping function.

The main contributions of this paper are (1) an EM type algorithm for learn-
ing a one-to-many mapping using a set of RVMs, resulting in a sparse set of tem-
plates, (2) an extension of the RVM algorithm to multivariate outputs, (3) im-
proving the robustness to image clutter using Hausdorff fractions, and (4) the
application to the pose estimation problem and embedding within a probabilistic
tracking framework.

The rest of the paper is organized as follows: The algorithm for learning the
one-to-many mapping using multiple RVMs is introduced in section 2. Section 3
describes a scheme for training the parameters of a single RVMmapping function
with multivariate outputs and section 4 explains the image features, which are
based on Hausdorff matching. The pose estimation and tracking framework is
presented in section 5, and results on hand tracking and full body tracking are
shown in section 6. We conclude in section 7.

2 Learning multiple RVMs

The pose of an articulated object, in our case a hand or a full human body, is
represented by a parameter vector x ∈ R

M . The features z are Canny edges
extracted from the image. Given a set of training examples or templates V =
{v(n)}Nn=1 consisting of pairs v(n) = {(x(n), z(n))} of state vector and feature
vector, we want to learn a one-to-many mapping from feature space to state
space. We do this by learning K different regression functions, which map the
input z to different regions in state space. We choose the following model for the
regression functions

x =Wkφ(z) + ξk, (4)
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Algorithm 1 EM for learning multiple mapping functions Wk

1. Initialize
Partition the training set V into K subsets by applying the K-means algorithm on the
state variable xn of each data point vn. Initialize probability matrix C.
2. Iterate
(i) Estimate regression parameters

Given the matrix C ∈ R
N×K , where element cnk = c

(n)
k is the probability that sample

point n belongs to mapping function k, learn the parameters
{

Wk,Sk
}

of each mapping
function, by multivariate RVM regression minimizing the following cost function

L
k =

N
∑

n=1

c
(n)
k

(

y
(n)
k

)T

Sk
(

y
(n)
k

)

, where y
(n)
k = x

(n) −Wk
φ(z(n)). (1)

Note: for speed up, samples with low probabilities may be ignored.
(ii) Estimate probability matrix C
Estimate the probability of each example belonging to each of the mapping function:

p(x(n)|z(n)
,Wk

,Sk) =
1

2π|S|1/2
exp

{

−0.5
(

y
(n)
k

)T

Sk
(

y
(n)
k

)

}

, (2)

c
(n)
k =

p(x(n)|z(n),Wk,Sk)
∑K

j=1 p(x
(n)|z(n),Wj ,Sj)

. (3)

where ξk is a Gaussian noise vector with 0 mean and diagonal covariance matrix
Sk = diag

{

(σk
1 )

2, . . . , (σk
M )2

}

. Here φ(z) is a vector of basis functions of the form

φ(z) = [1, G(z, z(1)), G(z, z(2)), ..., G(z, z(N))]T , where G can be any function
that compares two sets of image features. The weights of the basis functions are
written in matrix form Wk ∈ R

M×P and P = N + 1. We use an EM type
algorithm, outlined in Algorithm 1, to learn the parameters {Wk,Sk}Kk=1 of the
mapping functions. The regression results on a toy dataset are shown in figure 2.

The case of ambiguous poses means that the training set contains examples
that are close or the same in feature space but are far apart in state space, see
figure 1(a). When a single RVM is trained with this data, the output states tend
to average different plausible poses [1]. We therefore experimentally evaluated
the effect of learning mapping functions with different numbers of RVMs (with
Hausdorff fractions as the input to the mapping functions, see section 4). The
data was generated by random sampling from a region in the 4-dimensional
state space of global rotation and scale, and projecting a 3D hand model into
the image. The size of the training set was 7000 and the size of the test set
was 5000. Different numbers of mapping functions were trained to obtain a one-
to-many mapping from the features to the state space. The results are shown
in figure 3(a). Training multiple mapping functions reduces the estimation error
and creates sparser template sets. Additionally, the total training time is reduced
because the RVM training time increases quadratically with the number of data
points and the samples are divided among the different RVMs.
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Fig. 2. RVM regression on a toy dataset. The data set consists of 200 samples
from three polynomial functions with added Gaussian noise. (a) Initial clustering using
K-means. (b), (c),(d) Learned RVM regressors after the 1st, 4th and 10th iteration,
respectively. Each sample data is shown with the colour of the regressor with the highest
probability. A Gaussian kernel with a kernel width of 1.0 was used to create the basis
functions. Only 14 samples were retained after convergence.

# RVMs relevant approx. total mean RMS
templates training time error

1 13.48 % 360 min 15.82°
5 13.04 % 150 min 7.68°
10 10.76 % 90 min 5.23°
15 9.52 % 40 min 4.69°
20 7.78 % 25 min 3.89°
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Fig. 3. (a) Single vs. multiple RVMs. Results of training different numbers of
RVMs on the same dataset. Multiple RVMs learn sparser models, require less training
time and yield a smaller estimation error.
(b) Robustness analysis. Pose estimation error when using two different types of
features: histograms of shape contexts (SC) and Hausdorff matching costs (HD). Plotted
is the mean and standard deviation of the RMS error of three estimated pose parameters
as a function of image noise level. Hausdorff features are more robust to edge noise.

3 Training an RVM with multivariate outputs

During the regression stage, each mapping function is learned using an extension
of the RVM regression algorithm [21]. The attraction of the RVM is that it has
good generalization performance, while achieving sparsity in the representation.
For our case this means that the matricesWk only have few non-zero columns.
Each column corresponds to the Hausdorff scores obtained by matching a specific
shape template to the examples edge maps. Hence, only a fraction of the total
number of shape templates needs to be stored. The RVM is a Bayesian regression
framework, in which the weights of each input example are governed by a set of
hyperparameters. These hyperparameters describe the posterior distribution of
the weights and are estimated iteratively during training. Most hyperparameters
approach infinity, causing the posterior distributions of the effectively setting the
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corresponding weights to zero. The remaining examples with non-zero weights
are called relevance vectors.

Tipping’s formulation in [21] only allows regression from multivariate input to
a univariate output variable. One solution is to use a single RVM for each output
dimension. For example, Williams et al. used separate RVMs to track the four
parameters of a 2D similarity transform of an image region [25]. This solution
has the drawback that one needs to keep separate sets of selected examples for
each RVM. We introduce the multivariate RVM (MVRVM) which extends the
RVM framework to multivariate outputs, making it a general regression tool.4

This formulation allows us to choose the same set of templates for all output
dimensions.

A ridge regression scheme is used in [1, 2], which also allows selecting the
same templates for all output dimensions. However, ridge regression directly
optimizes over the weights without the use of hyperparameters. In contrast, we
extend the framework in [21] to handle multivariate outputs. A data likelihood
is obtained as a function of weight variables and hyperparameters. The weight
variables are then analytically integrated out to a obtain marginal likelihood as
function of the hyperparameters. An optimal set of hyperparameters is obtained
by maximizing the marginal likelihood over the hyperparameters using a version
of the fast marginal likelihood maximization algorithm [22]. The optimal weight
matrix is obtained using the optimal set of hyperparameters.

The rest of this section details our proposed extension of the RVM framework
to handle multivariate outputs and how this is used to minimize the cost function
described in eqn (1) and learn the parameters of a mapping function, Wk and
Sk. We can rewrite eqn (1) in the following form

Lk =

N
∑

n=1

logN (x̂
(n)
k |Wkφ̂k(z

(n)),Sk), (5)

where, x̂
(n)
k =

√

c
(n)
k x(n) and φ̂k(z

(n)) =

√

c
(n)
k φ(z(n)) (6)

We need to specify a prior on the weight matrix to avoid overfitting. We
follow Tipping’s relevance vector approach [21] and assume a Gaussian prior
for the weights of each basis function. Let A = diag(α−2

1 , . . . , α−2
P ), where each

element αj is a hyperparameter that determines the relevance of the associated
basis function. The prior distribution over the weights is then

p(Wk|Ak) =

M
∏

r=1

P
∏

j=1

N (wk
rj |0, α

−2
j ) , (7)

where wk
rj is the element at (r, j) of the weight matrix Wk. We can now com-

pletely specify the parameters of the kth mapping function as {Wk,Sk,Ak}. As
the form and the learning routines of parameters of each expert are the same, we

4 Code is available from http://mi.eng.cam.ac.uk/˜ at315/MVRVM.htm
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drop the index k for clarity in the rest of the section. A likelihood distribution
of the weight matrix W can be written as

p({x̂(n)}Nn=1|W,S) =

N
∏

n=1

N (x̂(n)|Wφ̂(z(n)),S) . (8)

Let wr be the weight vector for the rth component of the output vector x,
such that W = [w1, . . . ,wr, . . . ,wM ]T and let τr be the vector with the rth

component of all the example output vectors. Exploiting the diagonal form of S,
the likelihood can be written as a product of separate Gaussians of the weight
vectors of each output dimension:

p({x̂(n)}Nn=1|W,S) =

M
∏

r=1

N (τr|wrΦ̂, σ2
r) , (9)

where Φ̂ = [1, φ̂(z1), φ̂(z2), . . . , φ̂(zN )] is the design matrix. The prior distribu-
tion over the weights is rewritten in the following form

p(W|A) =

M
∏

r=1

P
∏

j=1

N (wrj |0, α
−2
j ) =

M
∏

r=1

N (wr|0,A). (10)

Now the posterior on W can be written as the product of separate Gaussians
for the weight vectors of each output dimension:

p(W|{x̂}Nn=1,S,A) ∝ p({x̂}Nn=1|W,S) p(W|A) (11)

∝
∏M

r=1N (wr|µr,Σr) , (12)

where µr = σ−2
r ΣrΦ

T τr and Σr = (σ−2
r ΦTΦ + A)−1 are the mean and the

covariance of the distribution of wr. Given the posterior for the weights, we
can choose an optimal weight matrix if we obtain a set of hyperparameters that
maximise the data likelihood in eqn (12). The Gaussian form of the distribution
allows us to the remove the weight variables by analytically integrating them
out. Exploiting the diagonal form of S and A once more, we marginalize the
data likelihood over the weights:

p({x̂}Nn=1|A,S) =

∫

p({x̂}Nn=1|W,S) p(W|A) dW (13)

=
M
∏

r=1

∫

N (τr|wrΦ̂, σ2
r)N (wr|0,A) (14)

=
M
∏

r=1

|Hr|
−

1
2 exp(−

1

2
τTr H

−1
r τr) , (15)

where Hr = σ2
rI+ Φ̂A

−1Φ̂
T
. An optimal set of hyperparameters {αopt

j }Pj=1 and

noise parameters {σopt
r }Mr=1 is obtained by maximising the marginal likelihood
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using bottom-up basis function selection as described by Tipping et al. in [22].
Again, the method was extended to handle the multivariate outputs. Details of
this extension can be found in [19]. The optimal hyperparameters are then used
to obtain the optimal weight matrix:

Aopt = diag(αopt
1 , . . . , α

opt
P ) Σopt

r = ((σopt
r )−2 Φ̂

T
Φ̂ + Aopt)−1

µopt
r = (σopt

r )−2 Σopt
r ΦT τr Wopt = [µopt

1 , . . . , µ
opt
M ]T

4 Robust representation of image features

In this paper, we use Hausdorff fractions [10] in the feature comparison function
G. Given two shapes represented by edge point sets z(i) and z(j), the Hausdorff
fraction fHD is defined as the ratio of points of the first shape that are within a
certain distance δ from the points of the second shape:

fHD(z(i), z(j)) =
|z

(i)
δ |

|z(i)|
, where z

(i)
δ ={a∈z(i) : min

b∈z(j)
||a− b|| < δ}. (16)

GHD(z(i), z(j)) = exp
{

−fHD
}

. (17)

The use of edge gradient information increases the discriminative power of these
matching methods [12], thus we compute the matching cost with eight discrete
orientation channels [8, 18].

We performed experiments comparing the robustness of Hausdorff fraction
based features GHD and features based on 100-dimensional shape-context his-
tograms GSC , described in [1, 2]. For this, a training image set is created by
sampling a region in state space, in this case three rotation angles over a limited
range, and using the sampled pose vectors to project a 3D hand model into the
image. Because the Hausdorff features are neither translation nor scale invariant,
additional training images of scaled and locally shifted examples are generated.
After RVM training, a set of around 30 templates out of 200 are chosen for
both, shape context and Hausdorff features. However note that the templates
chosen by the RVM for each methods may differ. For testing, 200 poses are
generated by randomly sampling the same region in parameter space and in-
troducing different amounts of noise by introducing edges of varying length and
curvature. Figure 3(b) shows the dependency of the RMS estimation error (mean
and standard deviation) on the noise level. Hausdorff features are significantly
more robust to edge noise than shape context features.

5 Pose estimation and tracking

Given a candidate object location in the image we obtain K possible poses
from the mapping functions, see figure 4(a). For each mapping function Wk

the templates selected by the RVM are matched to the input and the resulting
Hausdorff fractions form the basis function vector φHD. We then use regression
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Fig. 4. (a) Pose estimation. At each candidate location the features are obtained by
Hausdorff matching and the RVMs yield pose estimates. These are used to project the
3D model and evaluate likelihoods.
(b) Probabilistic tracking. The modes of likelihood distribution, obtained through
the RVM mapping functions, are propagated through a bank of Kalman filters [6]. The
posterior distributions are represented with an L-mode piecewise Gaussian model. At
each frame, the L Kalman filter predictions and K RVM observations are combined to
generate possible L×K Gaussian distributions. Out of these, L Gaussians are chosen
to represent the posterior probability and propagated to the next level. The circles in
the figure represent the covariance of Gaussians.

to obtain K pose estimates via xk =WkφHD. A set of candidate object locations
is obtained by skin colour detection for hands and background estimation for full
human body motion. Given M candidate positions we thus obtain K ×M pose
hypotheses, which are used to project the 3D object model into the image and
obtain image likelihoods.

The observation model for the likelihood computation is based on edge and
silhouette cues. As a likelihood model for hand tracking we use the function
proposed in [18], which combines chamfer matching with foreground silhouette
matching, where the foreground is found by skin colour segmentation. The same
likelihood function is used in the full body tracking experiments, with the dif-
ference that in this case the foreground silhouette is estimated by background
subtraction.

Temporal information is needed to resolve the ambiguous poses and to ob-
tain a smooth trajectory through the state-space after the pose estimation is
done at every frame. We embed pose estimation with multiple RVMs within a
probabilistic tracking framework, which involves representing and maintaining
distributions of the state x over time.

The distributions are represented using a piecewise Gaussian model [6] with
L components. The evaluation of the distribution at one time instant t involves
the following steps (see figure 4(b)):

(1) Predict each of the L components,

(2) perform RVM regression to obtain K hypotheses,

(3) evaluate likelihood computation for each hypothesis,
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(4) compute the posterior distribution for each of L×K components,
(5) select L components to propagate to next time step,

The dynamics are modeled using a constant velocity model with large process
noise [6], where the noise variance is set to the variance of the mapping error
estimated at the RVM learning stage. At step (5) k-means clustering is used to
identify the main components of the posterior distribution in the state space,
similar to [24]. Components with the largest posterior probability are chosen
from each cluster in turn, ensuring that not all components represent only one
region of the state-space.

For a given frame the correct pose does not always have the largest posterior
probability. Additionally, the uncertainty of pose estimation is larger in some
regions in state space than in others, and a certain number of frames may be
needed before the pose ambiguity can be resolved. The largest peak of the pos-
terior fluctuates among different trajectories as the distribution is propagated.
Hence a history of the peaks of the posterior probability needs to be considered
before a consistent trajectory is found that links the peaks over time. In our
experiments a batch Viterbi algorithm is used to find such a path.

6 Results and Evaluation

Global pose: In our first experiment, we estimate the three rotation angles
and the scale of a pointing hand. We use 10 RVMs to learn the mapping. First
5000 templates are created from a 3D model by random sampling from the
state-space. The task is to choose the relevant templates for pose estimation
from these templates. Even though we do not estimate image plane translation
using the mapping functions, we allow random translation within 7 pixels range
in the generated images to achieve translation invariance within a short range.
After training the RVMs, a total of 325 relevant templates out of 5000 were
selected. For comparison, Stenger et al. used approximately 12 000 templates
to estimate a similar type of motion [18]. The learned RVM mapping functions
are used to estimate the rotation angles and the scale of a pointing hand in a
sequence of 1100 frames. Skin colour detection is used to find candidate locations
for applying the mapping functions. However, the mapping functions themselves
only receive an edge map as their input. The tracking framework described in
section 5 is then applied to the detection results at every frame. Figure (5) shows
some example frames from this sequence.
Hand articulation : The method is applied to the hand open-close sequence

with 88 frames from [18], where approximately 30 000 templates were required
for tracking. To capture typical hand motion data, we use a large set of 10
dimensional joint angle data obtained from a data glove. The pose data was
approximated by the first four principal components. We then projected original
hand glove data into those 4 dimensions. The global motion of the hand in that
sequence was limited to a certain region of the global space (80°, 60°and 40°
in rotation angles and 0.6 to 0.8 in scale). The eight-dimensional state space
is defined by the four global and four articulation parameters. A set of 10 000
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templates is generated by random sampling in this state space. After training
10 RVMs, 455 templates out of 10 000 are retained. Due to the large amount of
background clutter in the sequence, skin colour detection is used in this sequence
to remove some of the background edges for this sequence. Tracking results are
shown in figure (6).
Full body articulation: In order to track full body motion, we use a data

set from the CMU motion capture database of walking persons (∼ 9000 data
points). In order to reduce the RVM training time, the data is projected onto
the first six principal components.

The first input sequence is a person walking fronto parallel to the camera. The
global motion is mainly limited to translation. The eight-dimensional state-space
is defined by two global and six articulation parameters. A set of 13,000 training
samples were created by sampling the region. We use 4 RVM mapping functions
to approximate the one-to-many mapping. A set of 118 relevant templates is
retained after training. Background subtraction is used to remove some of the
background edges. The tracking results are shown in figure (7). The second
input sequence is a video of a person walking in a circle from [15]. The range
of global motion is set to 360° around axis normal to the ground plane and 20°
in the tilt angle. The range of scales is 0.3 to 0.7. The nine-dimensional state-
space region is defined by these three global and six articulation parameters.
A set of 50 000 templates is generated by sampling this region. We use 50
RVM mapping functions to approximate the one-to-many mapping. A set of 984
relevant templates is retained after training. Background subtraction is used to
remove some of the background edges. The tracking results are shown in figure
(8).
Computation time: The execution time in the experiments varies from

5 to 20 seconds per frame (on a Pentium IV, 2.1 GHz PC), depending on the
number of candidate locations in each frame. The computational bottleneck is
the model projection in order to compute the likelihoods (approximately 100 per
second). For example, for 30 search locations and 50 RVM mapping functions
result in 1500 model projections, requiring 15 seconds. It can be observed that
most mapping functions do not yield high likelihoods, thus identifying them
early will help to reduce the computation time.

7 Summary and conclusion

This paper has introduced an EM type algorithm to learn a one-to-many map-
ping using multiple relevance vector machines. To this end the original RVM
formulation was extended to allow for multivariate outputs. The method was
applied to the problem of pose estimation from a single frame, where the RVMs
were used to select relevant templates from a large set of candidate templates.

Pose estimation was embedded within a tracking framework, combining both
discriminative and generative methods: At each frame the set of mappings from
feature to parameter space generates a set of pose hypotheses, which are then
used to project a 3D model and compute an image likelihood. The state posterior
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Fig. 5. Tracking a pointing hand. Example frames from tracking a pointing hand
sequence with 1100 frames using a single camera are shown. The model contours cor-
responding to the optimal path through the state distribution are superimposed, and the
3D model is shown below. A total of 389 relevant templates, divided between 10 RVM
mapping functions, were used to estimate the hand pose. For comparison, Stenger et
al. [18] used 12 000 templates to estimate a similar type of motion.

Fig. 6. Tracking an opening and closing hand. This sequence shows tracking of
opening and closing hand motion together with global motion on a sequence from [18].
A total of 537 relevant templates were used with 20 RVM mapping functions for pose
estimation. As a comparison [18] used about 30 000 templates to track the same se-
quence.

distribution, represented by a piecewise Gaussian distribution, is propagated
over time, and dynamic information is included using a bank of Kalman filters.
A batch Viterbi algorithm is used to find a path through the peaks of this
distribution in order to resolve ambiguous poses.

Template-based pose estimation schemes solve the problem of initialisation
and pose-recovery and maintain multiple hypothesis in tracking articulated ob-
jects. Furthermore edge-based schemes are resistant to background clutter and
image deformations to a certain degree. However, a major problem is the large
number of templates that are needed for the pose estimation of articulated ob-
jects [18]. We have presented a scheme where we achieve reduction of two to
three orders of magnitude in the number of templates.
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