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Abstract

This paper presents a practical technique for model-
based 3D hand tracking. An anatomically accurate hand
model is built from truncated quadrics. This allows for the
generation of 2D profiles of the model using elegant tools
from projective geometry, and for an efficient method to
handle self-occlusion. The pose of the hand model is esti-
mated with an Unscented Kalman filter (UKF), which mini-
mizes the geometric error between the profiles and edges ex-
tracted from the images. The use of the UKF permits higher
frame rates than more sophisticated estimation methods
such as particle filtering, whilst providing higher accuracy
than the extended Kalman filter. The system is easily scal-
able from single to multiple views, and from rigid to artic-
ulated models. First experiments on real data using one
and two cameras demonstrate the quality of the proposed
method for tracking a 7 DOF hand model.

1. Introduction

Hand tracking has great potential as a tool for better
human-computer interaction. This paper presents a method
for hand tracking that estimates the pose of a 3D hand model
constructed from truncated quadrics by using an Unscented
Kalman filter [18, 24]. The use of quadrics as building
blocks permits the application of elegant techniques from
projective geometry [23, 8, 6], as well as the handling of
self-occlusion. The profiles of the model are computed for
each camera view. These are then compared to images from
a video sequence, and the filter is used to estimate the pose
of the model (and its covariance matrix), minimizing the
geometric error between the projections of the model and
edges detected in the images. The flowchart in figure 1 gives
an overview of the tracking system.

The next section presents a brief literature survey of hand
tracking and human body tracking. Section 2 reviews some
of the material on projective geometry of quadrics and con-
ics and on the Unscented Kalman filter that are used in the
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Figure 1. Flowchart of the tracking system. A detailed
description of each stage of the process is given in section 3

remainder of the paper. The tracking system proposed here
is detailed in section 3. Section 4 shows experimental re-
sults from real data, and conclusions are presented in sec-
tion 5.

1.1. Previous Work

Different methods have been proposed to capture human
hand motion. Rehg and Kanade [21] introduced the use
of a highly articulated 3D hand model in their DigitEyes
hand tracking system. For tracking, the axes of the trun-
cated cylinders that are used to model phalanges are pro-
jected onto the image, and local edges are found. Finger
tip positions are measured through a similar procedure. The
error between the measured joint and tip locations is mini-
mized and the locations predicted by the model. The system
runs in real-time, but dealing with self-occlusions remains a
problem and is treated separately [22]. In [13] a deformable
3D hand model is used. The model is defined by a surface
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mesh which is constructed via PCA from training examples.
Real-time tracking is achieved by finding the closest possi-
bly deformed model matching the image. In [7] a stereo
hand tracking system using a 2D deformable model was
presented. A two-step algorithm to estimate the hand pose
is proposed in [25], first estimating the global pose and sub-
sequently finding the configuration of the joints. However,
the algorithm relies on the assumption that all fingertips are
visible. Recently, a vision based drawing system was pro-
posed in [16]. The 2D shape of a hand is modeled with B-
splines and partitioned sampling is used to track contours
in real-time. In [26] a model-based method for capturing
articulated hand motion is presented. The constraints on the
joint configurations are learned from natural hand motions,
using a data glove as input device. A sequential Monte
Carlo tracking algorithm, based on importance sampling,
produces good results, but is view-dependent, and does not
handle global hand motion.

Hand tracking is a special case of tracking articulated
objects. Most of the work in this area has been done in
human body tracking, for which there is an extensive litera-
ture. The first works on body tracking are due to O’Rourke
and Badler [20] and Hogg [14]. O’Rourke and Badler used
a constraint network, based on the structure and dynamics
of a human model, to estimate the body pose that best agrees
with the location of the head, feet and hands found in the
images. Hogg developed a system in which the geometric
error between the projection of a model and edges detected
in the image is minimized using hierarchical search. A sur-
vey of early results in the field can be found in [1]. A di-
rect search of the model parameters in order to match the
model projection with the images was presented in [12]. In
[19] three cameras are used for tracking in the presence of
self-occlusion and an extended Kalman filter is employed
for motion prediction. The technique of exponential maps
and twist motions is successfully applied to body tracking
in [4]. A novel formulation of multiple hypothesis track-
ing is introduced in [5]. In [9] body silhouettes are tracked
with active contours, and a physical force model is used to
estimate 3D pose. An annealed version of particle filtering
is developed in [10], which, although producing very good
results, has extremely high computational cost.

2. Theoretical Framework

2.1. Projective Geometry of Quadrics and Conics

A quadric � is a second degree implicit surface in 3D
space, and it can be represented in homogeneous coordi-
nates as a symmetric ����� matrix � such that ���	�
���
������ � [23]. Consider a quadric � given by ��������������� , seen from a normalized projective camera ��� !#"%$'&

. The camera center and a point
�

in image coor-
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Figure 2. A quadric � and its projection ( on the image
plane.

dinates define a ray �*),+.-/�  10 2'& . The depth of the point in
space is determined by the free parameter + (see figure 2).
The point of intersection of the ray with the quadric � can
be found by solving the equation

�*),+.- � �
�3)4+.-5� 
76 (1)

which can be written as

8 +:9<;>=@? � � +A; � �CB � � 
�D (2)

When the ray represented by �3),+.- is tangent to � , equa-
tion (2) will have a unique solution. Algebraically, this con-
dition is satisfied when the discriminant is zero, i.e.

� � )E?F? �HG 8 B - � � 
�D (3)

Therefore, the profile of the quadric � is a conic ( , given
by (I� 8 B�G ?F?F� [6]. Note that this formula is valid
only for a normalized camera ���  !J"	$K&

. To obtain the
image of a quadric � in an arbitrary projective camera �L�M  NO"QPR&

it is necessary to compute the transformation S
such that �TSU�  !V"@$'& . In this new coordinate system � is
represented as W� , where W�X�YSZ���
S .

For points
�>� ( , the unique solution of equation (2) is+:[H� G ?F� �C\ 8 , which gives the depth of the point on the

contour generator of quadric � .
The tangent ] to the conic at the point

�^� ( is given by]5�  _a` 6 _ 9 6
_cbd& �>�e( � [23]. Therefore, the homogeneous

representation of the normal f of ( at
�

is given by fg� _ ` 6 _ 9 6h
 & � .
If the matrix � of a quadric is singular, the quadric is

said to be degenerate. Different families of quadrics are ob-
tained from matrices � of different ranks. Particular cases
of interest are:

ellipsoids, represented by matrices � with full rank,

cones and cylinders, represented by matrices � withikj@l'm )4�n-5��o ,
2



a pair of planes � and � � , represented as � ����� � � ;� � �A� with ikj@l'm )4�n-5�7= .
In order to employ quadrics for modeling more general

shapes, it is necessary to truncate them. For any quadric �
the truncated quadric ��� can be obtained by finding points� satisfying:

� � �
� � 
 and � � � ��� 
K6 (4)

where
�

is a matrix representing a pair of clipping planes.

2.2. Nonlinear Filtering

The tracking of an object in 3D space from images can be
formulated as a nonlinear estimation problem. This formu-
lation allows the use of any nonlinear estimation technique,
such as extended Kalman filtering (EKF) [17, 2], particle
filtering [15], or other Monte Carlo methods [11]. The Un-
scented Kalman filter (UKF), an alternative to the EKF, has
been proposed by Julier et al. [18]. It is provably superior to
the EKF, producing better estimates of the covariance ma-
trices of the parameters involved. It is also more efficient
and simpler to implement, avoiding the computation of Ja-
cobian matrices, necessary to propagate distributions in the
EKF. Instead, a small number of carefully chosen sample
points is propagated in each estimation step, which provide
a compact parameterization of the underlying distribution.
This is also in contrast to random sampling methods such
as particle filtering which demand a larger number of sam-
ple points, and are therefore computationally expensive. It
should be noted, however, that both EKF and UKF assume
unimodal distributions.

Consider the nonlinear state transition equation	 )�
 ;
� -5����� 	 )�
 - 6�� )�
 ;
� - 6 
T;���� (5)

where � describes the system dynamics,
	 )�
'- is the � -

dimensional state of the system at time step 
 and
� )�
 ;��.-

is the process noise. The covariance matrix of the state dis-
tribution is given by ��� . A set of observations, related to
the state vector, are obtained through the equation� )�
 ;
� -5����� 	 )�
 ;��.- 6� )�
T;��.- 6 
T;
�"! 6 (6)

where
� )�
 ;#� - is the observation vector, � is the obser-

vation model and
 )�
 ;$� - is the measurement noise. An

overview of the filtering algorithm is given in algorithm 1.

3. 3D-Model Based Tracking

3.1. Description of the Hand Model

The hand model is built using a set of quadrics �&% 6�'T�( � 6:D D D 6 o*),+ , approximately representing the anatomy of a

Algorithm 1 Unscented Kalman Filtering (UKF) Algo-
rithm.

1: Select =-� ;
� points according to

	/. )�
 " 
'-h�102 354	 )�
 " 
'- _ � 
4	 )�
 " 
'- G76 .8 _ �#� 6:D D D 6 �4	 )�
 " 
'-C; 6 .:9<;8 _ �
� ;�� 6 D D D 6 ==� 6

(7)

where 6 .8 is the
_
th column of the matrix > �?� � )�
 " 
'- .

2: Compute
	@. )�
T;
� " 
'- by applying the system equation

(5) to
	 . )�
 " 
'- .

3: Compute the predicted state 4	 )�
 ;�� " 
'- (and the error
covariance matrix)

4	 )�
 ;�� " 
 -	� �
=-� ;
� 9

;A .CB [ 	 . )�
T;�� " 
'- D (8)

4: Compute
�D. )�
Q;E� " 
 - by applying the observation equa-

tion (6) to
	/. )�
T;�� " 
 - .

5: Compute the predicted observation 4� )�
T;
� " 
'- as

4� )�
 ;
� " 
'-5� �
==�
;
� 9

;A .CB [ � . )�
T;
� " 
'- D (9)

6: Compute the innovation FQ)�
A;G�.-	� � )�
%;H� - G 4� )�
A;� " 
'- from the current measurement
� )�
 ;#� - and the

predicted observation 4� )�
 ;�� " 
 - .
7: Update the Kalman gain matrix

M )�
 ;
� - .
8: Update the estimate of the state vector (and the error

covariance matrix)4	 )�
 ;
� " 
 ;
� -5� 4	 )�
 ;
� " 
'-�; M )�
T;
� -�FQ)�
 ;
� - D
(10)

real human hand, as shown in figure 3. Similar to Rehg
and Kanade [21], we use a hierarchical model with 27 de-
grees of freedom (DOF): 6 for the global hand position, 4
for the pose of each finger and 5 for the pose of the thumb.
The DOF for each joint correspond to the DOF of a real
hand. Only 7 DOF are currently tracked in our system,
global hand motion and thumb extension. All other joints
are kept fixed. Starting from the palm and ending at the tips,
the coordinate system of each quadric is defined relative to
the previous one in the hierarchy.

The palm is modeled using a truncated cylinder, its top
and bottom closed by half-ellipsoids. Each finger consists
of three segments of a cone, one for each phalanx. They
are connected by hemispheres, representing the joints. The
phalanges of the thumb are represented by an ellipsoid, a
truncated cylinder and a truncated cone. Hemispheres are
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Figure 3. The 27 DOF hand model is constructed from
39 truncated quadrics. Front view (left) and exploded view
(right) are shown.

used for the tips of fingers and thumb. The shape parameters
of each quadric are set by taking measurements from a real
hand.

3.2. Generation of the Contours

Each clipped quadric of the hand model is projected in-
dividually as described in section 2.1, generating a list of
clipped conics. For each conic matrix ( we use eigende-
composition to obtain a factorization given by

( ��� 9 ��� � 9�� 6 (11)

where

�e� � N P$ � ��� (12)

with
N�N � � ! . The diagonal matrix � represents a conic

aligned with the 	 - and 
 -axis and centered at the origin.
The matrix � is the representation in homogeneous coor-
dinates of a Euclidean transformation that maps this conic
onto ( . We can therefore draw ( by drawing � and trans-
forming the rendered points according to � . The drawing
of � is carried out by different methods, depending on its
rank. For ikj@l'm ) � - �go an ellipse, for ikj@l'm ) � -<� = a pair
of lines is drawn.

The next step is the handling of self-occlusion, achieved
by comparing the depths of points in 3D space. In section
2.1 it was shown how to obtain the depth of a point �*),+ [ -
on the contour generator of a quadric � . In order to check if�3),+:[.- is visible, equation (1) is solved for each of the other
quadrics � % of the hand model. In the general case there
are two solutions + % ` and + %9 , yielding the points where the
ray intersects with quadric � % . The point �3),+ [ - is visible if+ [�� + %� �<'16
�

, in which case the point
�

is drawn. Figure 4
shows an example of the projection of the hand model with
occlusion handling.

Figure 4. Handling self-occlusion: The 3D model (left) and
its generated contour (right) are shown.

3.3. Construction of the State and Observation Vec-
tors

The state vector
	

contains the global pose of the hand
and the configuration of the joints. Additionally, compo-
nents modeling the hand motion, such as velocity and ac-
celeration, can be included. In the most general case the
state vector will have dimension =��-� , where � G � is the
order of the dynamic model.

The observation vector
�

is obtained by detecting edges
in the neighborhood of the projected hand model. Let���% � ( � ��� `% 6 � ��� 9% 6:D D D 6 � ��� ���% + be the set of visible (not oc-
cluded) points on the contour generator of �&% as seen from
camera � � , and let ( �% be the projection of � % on � � . The
image of each point � ��� �% is denoted by

� ��� �% . The vectorf ��� �% normal to ( �% at
� ��� �% can be obtained, as described in

section 2.1. For each point
� ��� �% one looks for edges along

the normal f ��� �% (see for example [3]). The intensity values
in the images are convolved with a derivative of a Gaussian
kernel and an edge is assigned to the position � ��� �% with the
largest absolute value. The observation vector

�
is con-

structed by stacking the inner products f ��� �% � � ��� �% into a sin-
gle vector.

The predicted observation vector for the UKF is obtained
by projecting the hand model corresponding to the state
vector

	 [ )�
J; � " 
'- on each image. One then obtains a
set of reference contours, for which a list of image points� [Z� ( � ��� �% + is computed together with the corresponding
normals. Each of the remaining state vectors

	D. )�

; � " 
'-
is used to compute new contours and new lists

�".
of im-

age points. The vectors
��. )�
 ; � " 
'- are then constructed

by stacking the inner products f ��� �% � � ��� �% , where the points� ��� �% are in the list
� .

. The predicted observation can be
found according to (9).

Each component of the innovation vector will then have
the form fC�h)�� G W� - , where W� is the average position of
the contour points in a single image, � is the corresponding
edge in that image and f is the corresponding normal vector
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Figure 5. Tracking of an open hand with a single camera.
Top row: contours superimposed on frames. Bottom row:
estimated 3D pose of hand model.

Figure 6. Tracking of a pointing hand with extension of the
thumb using two cameras. Top and middle row: model pro-
jected on images from camera 1 and 2, respectively. Bottom
row: corresponding 3D pose as seen in view 1.

of the reference contour. Therefore, a component of the
innovation is the distance between the average contour point
and the corresponding edge. Thus the innovation can be
interpreted as the error in pixels between the projection of
the hand model on each image and the edges in that image.

4. Experimental Results

Real data experiments were designed to test the proposed
tracking algorithm. Three sequences of eighty o�� 
 � =����
grey-scale images of a hand in front of a dark background
were acquired. The parameters of the hand model were
manually set to match the pose of the hand in the first frame.
Six DOF were given to the motion of the hand and one DOF
was given to the configuration of the thumb. This allows for

Figure 7. Tracking of a pointing hand from two views. Top
and middle row: model projected on images from camera 1
and 2, respectively. Bottom row: corresponding 3D pose as
seen in view 1.

the modeling of arbitrary rigid body motion plus the flex-
ion of the thumb, simulating a “point and click” interface.
The dynamics of the hand and thumb were modeled using
a second order process, i.e. using position, velocity and ac-
celeration.

The results of the tracking algorithm can be seen in fig-
ures 5, 6 and 7. Figure 5 illustrates the result of tracking an
open hand using a single camera. The images in the top row
show the contours superimposed on selected frames of the
sequence, and the bottom row shows the estimated 3D pose
of the hand model. The tracking of a pointing hand from
two views is shown in figures 6 and 7. The first two rows
show the projection of the model on images from each view.
The corresponding 3D pose of the hand can be seen in the
bottom row. From figure 6 it is clear that the configuration
of the thumb is accurate. The quality of the estimation of the
3D position and orientation of the model is demonstrated in
figure 6.

For a single camera the tracking algorithm operates at a
rate of 3 frames per second on a Celeron 433MHz machine.
Note that the computational complexity grows linearly with
the number of cameras. Although the system is not oper-
ating in real-time yet, it is expected that this goal can be
achieved by code optimization and using a faster machine.
Moreover, the algorithm can be implemented on distributed
systems in a straightforward manner.
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5. Summary and Conclusions

This paper presented a novel model-based hand tracking
system. The use of quadrics to build the 3D model yields a
practical and elegant method for generating the contours of
the model, which are then compared with the image data.
This measurements are used by an Unscented Kalman filter
to estimate the current motion and configuration parame-
ters of the model. Results with real data demonstrate the
efficiency of the proposed method. The system is easily
scalable from single to multiple views, and from rigid to
articulated models. Real-time performance is expected to
be achieved for an implementation on a distributed system,
using one processor per camera.
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