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Efficient Action Spotting Using Saliency Feature Weighting

Yuzhi SHI†, Takayoshi YAMASHITA†, Tsubasa HIRAKAWA†, Hironobu FUJIYOSHI†,
Mitsuru NAKAZAWA††, Yeongnam CHAE††, and Björn STENGER††,

SUMMARY Action spotting is a key component in high-level video
understanding. The large number of similar frames poses a challenge
for recognizing actions in videos. In this paper we use frame saliency
to represent the importance of frames for guiding the model to focus on
keyframes. We propose the frame saliency weighting module to improve
frame saliency and video representation at the same time. Our proposed
model contains two encoders, for pre-action and post-action time windows,
to encode video context. We validate our design choices and the generality
of proposed method in extensive experiments. On the public SoccerNet-v2
dataset, the method achieves an average mAP of 57.3%, improving over
the state of the art. Using embedding features obtained from multiple
feature extractors, the average mAP further increases to 75%. We show
that reducing the model size by over 90% does not significantly impact
performance. Additionally, we use ablation studies to prove the effective
of saliency weighting module. Further, we show that our frame saliency
weighting strategy is applicable to existing methods on more general action
datasets, such as SoccerNet-v1, ActivityNet v1.3, and UCF101.
key words: Action spotting, SoccerNet-v2, Frame saliency

1. Introduction

Action spotting is a key component for understanding video
content. Detecting actions in each frame provides rich in-
formation for video understanding applications and has ap-
plication in video search, content moderation, and video
summarization. In this paper we are interested in the task of
action spotting, which can be used for video editing. Editing
raw footage of sports games by hand to generate shorter sum-
maries for broadcast is time-consuming. By spotting game-
specific actions of interest, these can be selected specifically,
summarizing the highlights of a particular game.

Action spotting is defined as the temporal localization of
special actions within videos. Prior work has mainly focused
on the question of how to model the temporal context by
evaluating cost functions and different model structures. For
example, new loss functions have been explored in CALF [2],
where a loss function is proposed that weights features based
on their temporal context. Frames that are temporally distant
from an action are given a high cost, while closer frames are
given a lower cost. The recent work NetVLAD++ [3] has
shown the benefit of using two different encoders for pre-
action and post-action temporal windows.

A less explored research direction is how to understand
video content efficiently by focusing on keyframes. Videos
contain many similar frames, which add little information to
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Fig. 1: Action Spotting. The action can be recognized from
a single frame showing a cheering player. The proposed
method estimates frame saliency in order to focus on dis-
criminative keyframes for efficient action spotting.

the task at hand. Much like a storyboard or cartoon strips, ac-
tions and their context can be expressed in far fewer pictures,
if these contain sufficient information. To locate keyframes
in videos, we use saliency to represent the importance of
frames based on the similarity of frame features and take the
frames with high saliency as keyframes. In this paper, we
propose the frame saliency weighting module to calculate a
saliency score for each frame and use these as feature weights
for action spotting. Different from traditional saliency cal-
culation methods, the proposed method improves video rep-
resentation and frame saliency based on frame features for
better performance and efficient inference. We show that this
module has significant benefits in terms of guiding the model
to extract meaningful representations. Experiments demon-
strate that this frame saliency computation, based on frame
similarity within temporal windows, is efficient and highly
effective at improving video representation, while being sig-
nificantly less complex than models using self-attention such
as transformers [4]. As an additional benefit, focusing on the
salient features allows the model to understand videos with
less parameters and reduce the model size over 90% while
maintaining high action spotting precision.

On SoccerNet-v2 [1], the proposed model reaches an
57.3% Average-mAP for action spotting, an absolute im-
provement of +3.9% with respect to the current state of the
art. We use confidence scores and saliency scores to analyze
the the performance of the proposed model in detail. By
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using multiple feature extractors and computing embedded
features from these, the Average-mAP further increases to
75.0%. In extensive experiments, we validate the model
structure, feature extractors, and hyper parameter choices.
To highlight its generality and versatility, we show how our
method can be used for video understanding tasks on the
other public datasets and improve existing models.

In summary, (1) we propose the frame saliency weight-
ing module to focus on salient information in videos by using
temporal saliency weighting of feature vectors within tem-
poral windows, (2) we conduct extensive experiments to an-
alyze the performance of action spotting using saliency, (3)
the proposed model achieves state-of-the-art performance in
SoccerNet-v2 [1] on the task of action spotting, and improve
existing methods on other tasks of video understanding.

2. Related Work

Video Understanding. Video understanding aims to ex-
tract the necessary information from videos that may con-
tain many different types of actions. Several subtasks can be
defined as action recognition [5], action detection [6], and
video classification [7], etc. Action recognition typically
targets atomic actions in short video clips. Action detec-
tion aims to find the time range in which an action takes
place. However, the start and end times of an action are
sometimes ambiguous and depend on the annotation in a
specific dataset. For example, the ’soccer goal’ action may
only include the scene of kicking ball and the ball flying into
the goal, or may include player running and cheering scenes.
Video classification is the task of predicting a label that is
relevant to the video.

Action Spotting. In the action spotting task, one or
more action classes are predicted in every frame, includ-
ing a background class when no specific action is detected.
Example applications include action search, or the genera-
tion of highlight videos based on the estimated timestamps
for actions of interest. Action spotting in sports videos is
a challenging task owing to the large amount of data to be
processed, rapid scene changes and the imbalance of action
class labels. Previous work proposed several methods for
action spotting in soccer videos. A regression and mask-
ing approach for soccer videos (RMS-Net) were introduced
in [8], which ignores pre-action data and focuses on post-
action frames during training. Recent work introduces a
context-aware loss function, weighting frames at different
temporal distances from the ground truth timestamp, as dis-
tant, just before and just after an action occurs [2]. The
recent NetVLAD++ model proposes an architecture with
two NetVLAD [9] modules to learn a context-sensitive vo-
cabulary for past and future temporal context [3]. This
model has shown to achieve high action spotting accuracy
on SoccerNet-v2. Few attempts have been made to focus on
the important frames which are related to actions for efficient
video understanding. We explicitly address this problem by
estimating the saliency of each frame, reducing the weight
of redundant frames, and increasing the weight of keyframes

that are important.
Frame Extraction. The purpose of frame extraction is

to use as few video frames as possible to represent as much
video content as possible. There are many previous work re-
lated to frame extraction, which select keyframes from video
to generate video summaries or improve the performance of
video understanding tasks [10], [11]. SCSampler [10] in-
troduces a lightweight “clip-sampling” model that can effi-
ciently identify the most salient temporal clips within a long
video. Different with them, we identify the most salient
frames within each video clips and improve the video rep-
resentation at a finer granularity. SMART [11] proposed
a method that, instead of selecting frames by considering
one at a time, considers them jointly. Their frame selection
module is independent of the backbone model, resulting in
a complex training process and an increase in model param-
eters. While our model could locate keyframes and improve
the performance at the same time.

Datasets. Many video datasets have been created for
action detection [12] and classification of actions [13] and ac-
tivities [7]. Large-scale datasets for specific sports have been
compiled, such as GolfDB [14] and MLB-YouTube [15]. A
dataset of 222 soccer videos was released in [16]. Soc-
cerDB[17] merged a subset of 270 games from SoccerNet-
v1 with 76 soccer games. SoccerNet-v1 [18] contains three
action labels, card, goal and substitution. The recently ex-
tended dataset, SoccerNet-v2[1] includes over 300 thousand
additional annotations and proposed novel tasks required for
the automatic production of soccer broadcast videos. It con-
tains 765 hours of footage of 500 soccer games and includes
17 different game-related action labels.

3. Methodology

The videos contain many similar frames in temporal seg-
ments (chunks) that are redundant for action spotting. Addi-
tionally, when an action occurs, the content of video changes,
and the changed frame is different from others. Such frames
appear when actions occur, consequently they should be fo-
cused on. The proposed method explicitly addresses the
two facts. Considering that simply removing similar frames
would reduce the duration of actions and change the content
of video, we introduce an efficient frame saliency weighting
module, which reduces the weight of redundant information
and highlights keyframes that are important for the action
spotting task. Action spotting models benefit from such dis-
tinct frames which have low inter-frame similarity and high
saliency.

3.1 Frame Saliency Weighting

To focus on keyframes efficiently, we weight features with
saliency, which is used to represent the importance of frames.
The formula of computing a weighted frame feature is as
follows.
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Fig. 2: Proposed Network. We propose a new model with two encoders. An encoder is stacked by frame saliency weighting
modules. A frame saliency weighting module consists of a frame saliency estimator, feature weighting and remapping.
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where 𝒇𝑖 means the 𝑖𝑡ℎ feature in a chunk, 𝒌𝑖 is the weighted
feature vector of the 𝑖-th frame, 𝑁 𝑓 is the number of frames in
a chunk, and \ is a hyper parameter to adjust feature weights.
When not explicitly stated, the value of \ is 0. By weighting
features with saliency, model could locate keyframes and im-
prove video representation efficiently. When action happens,
the frame and frame feature would change. Consequently,
we consider that locating distinct frames according to the
similarity of frame features is an efficient way to detect ac-
tions. 𝑠𝑖, 𝑗 represents the similarity of 𝑖-th and 𝑗-th frame
features. The calculation of 𝑠𝑖, 𝑗 is as follows.

𝑠𝑖, 𝑗 = 𝒇 T
𝑖 𝒇 𝑗 . (2)

If 𝑠𝑖, 𝑗 is high, we consider the 𝑖-th and 𝑗-th frames similar
and the content of them redundant.

To further improve the representation, we subsequently
apply feature remapping using two fully connected layers
and a ReLU layer.

𝒌remap = max (0, 𝒌𝑾1 + 𝒃1)𝑾2 + 𝒃2 + 𝒇 , (3)

where𝑾1 and𝑾2 are the weights and 𝒃1 and 𝒃2 are the biases
of the fully connected layers, respectively. 𝒇 means the fea-
tures of all frames in a chunk and 𝒌 represents the weighted
features. This step improve the representation ability of the
model via mapping features into a higher-dimensional space
and projecting them back into the original space. Finally,
we use a residual structure to solve the gradient degradation
problem and use two layer-normalization to make training
more stable.

3.2 Model Architecture

The structure of the proposed model is shown in Figure 2.
When an action occurs, the scenes before and after the ac-
tion are generally different, especially in soccer videos. In
order to locate actions by detecting scene changing before
and after an action, we split video clip features into two parts
of the same length, pre-action and post-action, and use two
encoders to process each part, respectively. Given an image
feature dimension 𝐿 and the number of frames in a chunk 𝑁 𝑓 ,
the shape of the output of the feature extractor is 𝑁 𝑓 × 𝐿. We
use a fully connected layer to reduce the feature dimensions
for efficiency and for a fair comparison among different fea-
ture extractors, which output features with different length.
The size of the matrix output by the fully connected layer
is 𝑁 𝑓 × 𝐸 , where 𝐸 is the output dimension of the fully
connected layer. The input of the remapping module is an
𝑁 𝑓 × 𝐸 matrix, which is expanded to an 𝑁 𝑓 × 2𝐸 matrix
by a fully connected layer. After a ReLU activation layer,
it uses another fully connected layer to remap the features
to a 𝑁 𝑓 × 𝐸 matrix. In this manner, the shape of input
data of frame saliency module is the same with the output
data. Therefore an encoder could contains 𝑁 frame saliency
weighting module. In the last Multilayer Perceptron (MLP)
module, we concatenate the output of two encoders and aver-
age them in the temporal direction. Finally, we use a softmax
activation layer, a fully connected layer, and a sigmoid layer
to output the action classification result.

3.3 Implementation Details

We use a binary cross-entropy loss, which we optimize using
an Adam optimizer, an initial learning rate of 0.003. We
set the batch size to 64 and the chunk size to 15 seconds.
We carry out non-maximum suppression (NMS) [18] over
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Fig. 3: NMS Process. To improve spotting results, we use
non-maximum suppression to handle prediction. NMS pro-
cess is used on confidence of a whole video each class.

a 30 second window with a threshold 0. We use the model
obtaining the highest mAP value on the validation dataset as
the final model and use it to evaluate on the test dataset.

NMS. To reduce the false detection rate, low-confidence
predictions are filtered using non-maximum suppression
(NMS), which is the same as in previous works [1]–[3],
[18]. The NMS process is shown in Figure 3. For each
class, we find the first peak of confidence from all frames
and set the confidence of the rest frames in NMS window to
0. Then, we find the next peak and perform the same process
until all peaks above the NMS threshold are found. Finally,
we set the confidences below the threshold to 0.

4. Experiments

In experiments we evaluate the performance of the proposed
model. We visualize the confidence graph as well as the
saliency graph to analyze the results, and conduct extensive
experiments to analyze the influence of chunk size and the
number of encoders, etc. To evaluate the effectiveness of the
frame saliency weighting module, we compare the proposed
models with fixed saliency and learnable saliency. Further,
to evaluate the generality of the proposed method, we use
the proposed module to improve the video representation
for action spotting, temporal action proposal generation, and
video classification using SoccerNet-v1, Activity-v1.3, and
UCF101, respectively.

Dataset. We use the public SoccerNet-v2 dataset [1],
which contains video footage and annotations of 500 soccer
games to train and evaluate our method. We split the dataset
into training, validation, and testing sets following the same
procedure as the original paper (300, 100, and 100 games,
respectively). The frame rate of videos is 2 frames for each
second. The ground truth for each frame is a label vector.

The label vector contains 17 different action labels as well
as a label for the background. In the training process, videos
are divided into chunks, and each chunk is annotated by a
label vector. The action label in label vector is set as 1 if the
corresponding action occurs in the chunk and other labels
are set as 0. If none of the 17 actions appears in the chunk,
then the background label is set to one. If there are a goal
action and two play out of ball actions happen in the chunk,
the labels of goal and play out of ball are 1 and other labels
are 0 in the label vector.

Video Encoding. The feature extractor maps every
video frame to a feature vector. We evaluated three different
feature extractors, ResNet-152 [19], ResNet-152 with PCA,
and embedding features [20]. The ImageNet [21] pretrained
ResNet-152 model extracts 2048-dimensional features for
each frame. The feature of ResNet-152 with PCA are fur-
ther reduced to 512 dimensions using PCA. Embedded fea-
tures [20] are computed by passing frames to five networks
pretrained on other datasets, and then embed all features to
obtain an 8576-dimensional feature vector. In advance, fea-
tures are computed for all frames, where frames are scaled to
224 × 224 pixels before passing them to feature extractors,
respectively.

Evaluation Protocol. Action spotting task require
models to output a multi-label classification prediction for
each frame. If the distance between the ground truth times-
tamp and the predicted timestamp is less than Δ seconds, the
prediction is considered positive. Δ is a threshold ranging
from 5-60 seconds using a 5 second step size. We calculate
the average precision (AP) for each action class and each Δ.
The mean average precision (mAP) score is calculated by
taking the mean AP over all classes with Δ. The Average-AP
is the average of 12 AP values calculated over 12 tolerances
Δ for each class. The Average-mAP metric is the average of
12 mAP values calculated over 12 tolerances Δ.

4.1 Action Spotting

Table 1 shows the results of our proposed model as well as
the models from the literature. We achieve 57.3% Average-
mAP, representing an absolute increase of 3.9% over the
previous state of the art. NetVLAD [9] and MaxPool pooled
features regardless of their temporal relationship between
frames. The NetVLAD++ model uses two NetVLAD pool-
ing modules to handle the first and second half of every
chunk, respectively. However, it does not consider the im-
portance of frames within each half chunk, treating them
equally. In contrast, the proposed model uses the saliency
of frames as feature weights to focus on keyframes and learn
the importance of each frame.

Performance decreases when increasing the stride value
from 1 to 20 frames, however, with an Average-mAP of
53.1% it is an absolute 5% higher than NetVLAD++. This
means that our model can run the inference at a significantly
higher speed for a similar average mAP value. Addition-
ally, the model still outperforms NetVLAD++ in terms of
Average-mAP at one tenth of the model size. Consequently,
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Table 1: Action Spotting Results. Evaluation results in terms of Average-mAP, where available, on the SoccerNet-v2 dataset
with two different stride values during testing. 𝑁 is the number of frame saliency weighting modules and 𝐸 is the feature
dimension output by the first fully connected layer.

Model Feature Extractor Stride 1 Stride 20 Size/Param

NetVLAD ResNet+PCA 31.4 - 7.50MB/0.66M
CALF ResNet+PCA 40.7 - 6.64MB/0.58M
MaxPool ResNet+PCA 18.6 - 0.11MB/0.01M
NetVLAD++ ResNet+PCA 50.7 46.7 7.50MB/0.66M
NetVLAD++ ResNet 53.4 48.1 19.50MB/1.70M
Ours [𝑁 = 1, 𝐸 = 512] ResNet+PCA 56.0 51.0 27.24MB/2.38M
Ours [𝑁 = 1, 𝐸 = 64] ResNet 54.0 49.5 1.93MB/0.17M
Ours [𝑁 = 2, 𝐸 = 256] ResNet 56.9 53.0 18.19MB/1.59M
Ours [𝑁 = 1, 𝐸 = 512] ResNet 57.3 53.1 66.29MB/3.16M

the frame saliency weighting module is an elegant and effi-
cient structure for action spotting.

Confidence Score. To analyze the experiment results,
we visualize the results via using a confidence score graph,
shown in Figure 4. The confidence score is the prediction
of the model before processed by NMS. From (a) and (d) in
Figure 4, we observe that for the goal action label, confidence
is high after the action itself, corresponding to scenes of
celebration by players and fans. Offside actions typically
include scenes where one of the referee raises a flag. In
Figure 4 (b), the scene where a referee raising the flag occurs
for 6 seconds after the offside action itself. In Figure 4 (e),
no referee scene appears, and the confidence of an offside
action is low. Figure 4 (c) shows a substitute action, and
confidence is high for the frames 10 seconds before and after
the action, as the camera typically focuses for several seconds
on the player running to the sideline and the substitute player
entering the field. The confidence of the substitution action
is close to zero after a substitution as shown in Figure 4 (f).
Confidence score could indicate the scenes related to specific
actions and the reason for the prediction results.

Saliency Score. To explore whether the saliency score
is critical for action spotting, we plot saliency score graphs
of six samples. The saliency score is calculated by the last
frame saliency estimation module in the model. We set the
stride length to 15 seconds in inference, equal to the chunk
size used in training and concatenate the saliency scores
in every chunk to obtain the saliency of all frames. From
Figures 5 (a) and (d), we observe that high-saliency scores
appear at the time when a referee appears or players fall to
the ground, which are salient features to spot a foul action.
For goal actions, the model focuses on the frames in which
the ball enters the goal. Because the saliency score is high
on such frames, shown in Figures 5 (b) and (e). In Figures 5
(c) and (f), the frames in which a referee raises a yellow flag
have high saliency scores, which are focused when locating
off-side action. From these results, we can observe that the
saliency score of the frames that are related to actions is high.
Therefore the frame saliency weighting module can focus on
action-related frames and improve video representation by
using the saliency scores as feature weights. Furthermore,
the saliency score can help us to interpret the prediction

results and help the proposed model be applied in the areas
where interpretable results are required. The frame-level
saliency scores are helpful to improve model performance.

4.2 Influence of Chunk Size and Number of Encoders

We analyze the effect of the number of encoders, as well as
the effect of the chunk size using the Average-mAP metric.
The results are presented in Table 2.

Chunk Size. Because our model is trained for recogniz-
ing action in every chunk, the chunk size is a necessary hyper
parameter. If the chunk size is too large, a chunk would con-
tain multiple actions which can affect each other and make
the training challenging. If there is at most one action within
a chunk, the adjacent chunks do not affect each other. The
model needs to memorize 𝐶 + 1 types of patterns, where 𝐶

is the number of action classes in the dataset. If at most
two actions occur in a chunk, the model needs to memorize
𝐶2 +1 types of patterns. On the other hand, if the chunk size
is too small, video chunks where no action happens would
increase and result in a more unbalanced dataset. Therefore,
selecting an appropriate chunk size is important for action
spotting. As shown in Table 2, 15 seconds is an appropriate
chunk size, which is also reported in NetVLAD++[3]. We
consider that the appropriate chunk size is determined by
duration of frames which are related to specific actions.

Number of Encoders. When an action occurs, the
scene of the video would change. For example, before a goal
action, players are running to the goal, while after a goal
is scored, players celebrate and assemble. A model with
two encoders is able to detect such scene changes easily,
by learning from pre-action and post-action scenes, respec-
tively. The model with two encoders performs best, as shown
in Table 2. Models with three or four encoders increase the
complexity of model structure while not further improving
accuracy. We hypothesize that when increasing the number
of encoders with a fixed chunk size, the temporal segments
feeded into each encoder will be smaller and they will con-
tain less temporal information. It increases the difficulty of
capturing temporal correlations within frames in a chunk.
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Fig. 4: Confidence Score Examples. Labeled actions from the SoccerNet-v2 dataset [1] are shown in frames marked by
red boxes. The confidence scores for the adjacent frames are marked by circles in the graph. The translucent red rectangle
indicates the range within 5 seconds from the ground truth timestamp.
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Fig. 5: Saliency Score Examples. Labeled actions from the SoccerNet-v2 dataset [1] are shown in frames marked by red
boxes. The saliency scores for the adjacent frames are marked by circles in the graph. The translucent red rectangle indicates
the range within 5 seconds from the ground truth timestamp.

Table 2: Comparison of Chunk Sizes and Numbers of En-
coders. We evaluate the Average-mAP for chunk sizes from
10 to 30 seconds, while changing the number of encoders
from 1 to 4, using ResNet-152 as the feature extractor. The
highest value was obtained for a model using two encoders
and a chunk size of 15 seconds.

Chunk size (s) Number of encoders
1 2 3 4

10 50.98 54.92 54.96 54.30
15 52.90 57.32 55.51 55.47
20 50.81 54.97 53.69 54.01
25 48.12 53.30 53.03 51.41
30 45.69 50.99 49.55 49.52

4.3 Influence of Model and Feature Extractor

We analyze the effect of the model and feature extractor, and

compare the proposed method with self-attention using the
Average-mAP metric. The results are presented in Tables 3
and 4.

Model. We compare our proposed method with
NetVLAD++ [3] and a transformer-based model [4] using
different feature extractors. As shown in Table 3, our pro-
posed method achieves the best performance. NetVLAD++
leverage two NetVLAD encoders to learn temporal informa-
tion, however it could not capture the importance of each
frame. The transformer-based model only have one encoder,
which leads to the difficulty of locating the frame changes
before and after actions.

Feature Extractor. The embedding features extracted
by five models [20] greatly improve the performance of all
methods, highlighting the importance of efficient video rep-
resentations for the action spotting task. For any feature
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Table 3: Comparison of Models and Feature Extractors
in terms of Average-MAP. Our proposed method achieves
the best performance in all choices of the feature extractor.

Feature Extractor Transformer NetVLAD++ Ours

ResNet+PCA 47.8 50.1 56.0
ResNet 48.3 53.4 57.3
Embedding 73.8 74.1 75.0

Table 4: Comparison with Self-attention. ResNet-152
is used as feature extractor. We develop two self-attention
based models with an encoder and two encoders respectively.

Model Average-mAP Size (MB)
Self-attention (1 encoder) 48.3 97.2
Self-attention (2 encoders) 53.0 249.0
Ours (2 encoders) 57.3 66.3

extractor, our proposed method reaches a better result than
other models. We consider that the proposed method would
improve the presentation of video features by increasing the
weights of keyframes.

Comparison with Self-attention Model. In order to
compare with self-attention, we develop two self-attention
based models with a transformer encoder and two trans-
former encoders, respectively. Our method reaches a higher
Average-mAP, as presented in Table 4. We consider that it is
because the frame saliency weighting module does not have
three fully connected layers to calculate the vectors K, Q,
V in a transformer encoder [4]. The calculation of K, Q,
V changes the mapping results of the feature extractor and
reduces the ability of capturing the similarity among frames.
In addition, the three fully connected layers increase the
model parameters. Different from them, our model learns to
calculate the saliency of each frame based on the similarities
of the learnable frame features.

4.4 Comparison with Frame Extraction Methods

To further demonstrate the effectiveness of our method, we
leverage three frame extraction methods to select frames be-
fore feeding features into the proposed model, and compare
with different methods. Keyframe extraction is an efficient
method used to clearly express the important contents of a
video file by extracting a set of representative frames and re-
moving the duplicated ones. The techniques of keyframe ex-
traction can be classified into three main classes: sampling-
based, shot based and clustering-based techniques [22]. We
develop these methods, and the implementation details are
as follows. The sampling-based method randomly selects 10
frames from every chunk containing 30 frames. The shot-
based method splits every video chunk into several shots,
and select the center frame in each shot as a keyframe. The
cluster-based method clusters all 30 frames in every chunk
into 10 frames. The model without keyframe extraction
module achieve the best performance, as shown in Table 5.
We consider that selecting frames would change the origi-

Table 5: Comparison with Keyframe Extraction Meth-
ods. We use Average-mAP on SoccerNet-v2 as the metric
and ResNet152 with PCA as the feature extractor. The chunk
size is 15 seconds, and frame rate is 2.

Method Average-mAP

Sampling-based 49.0
Shot-based 38.0
Cluster-based 46.9
Ours 56.0

Table 6: Comparison of Fixed Saliency and Variable
Saliency. In the model with fixed saliency, we set 1.0 to
all saliency scores to ignore the influence of saliency.

Model Average-mAP

Fixed saliency 49.5
Variable saliency 56.0

Table 7: Comparison NetVLAD++ with and without pro-
posed method. NetVLAD++(*) denotes NetVLAD++ with
our saliency weight module. Training time is the time used
for obtaining the highest mAP on the validation dataset.

Model Average-mAP Training time(Second)

NetVLAD++ 53.4 368.9
NetVLAD++(∗) 54.5 292.7

nal temporal information and influence the performance of
action spotting. Compared to them, our method can focus
on the keyframes and learn to locate keyframes based on the
inter-frame similarity and annotation labels automatically
without changing the original temporal relationship. There-
fore, the proposed method achieves the best performance.

4.5 Importance of Saliency

We compare the performance of our method with fixed and
learnable saliency on SoccerNet-v2 dataset to analyze the
influence of the proposed saliency weighting module. The
features are extracted using ResNet with PCA. To remove
the influence of saliency score, we fix all saliency scores in
the pretrained model as 1, as a result, the weight of every
frame is equal, and the influence of saliency score can be
ignored. Without saliency weighting, the average mAP of
the model drops to 49.5%, a decrease by absolute 6.5% as
shown in Table 6. The saliency weighting module improves
the Average-mAP for action spotting by weighting frames
using learnable saliency scores.

4.6 Generality of Saliency

4.6.1 Improvement of NetVLAD++

To prove that the frame saliency weighting module could
find the keyframes and improve feature representation by
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Fig. 6: Change of mAP with respect to Epochs on the
Validation Dataset. The changes of NetVLAD++ and
NetVLAD++(∗) during training are shown respectively.

weighting features through saliency scores, we develop a
model by adding a frame saliency weighting module be-
fore the NetVLAD++ model, denoted by NetVLAD++(∗).
The learnable frame saliency weighting module could be
seen as a preprocessing module. As shown in Table 7,
by using the frame saliency weighting module to improve
frames, the performance of NetVLAD++ is improved by
1.1%. Additionally, by using frame saliency, the training
time is reduced. As presented in Figure 6, NetVLAD++
obtains the highest mAP at epoch 20 using 368.9 seconds,
whereas NetVLAD++(∗) obtains the highest mAP at epoch
11 with 292.7 seconds. The frame saliency module gives
larger weights to keyframes, which encourages the model
to focus on important frames and understand video content
from keyframes effectively.

4.6.2 Evaluation on Other Datasets.

To demonstrate the applicability of the proposed model to
different public datasets and different tasks, we report the
evaluation results on three additional datasets, SoccerNet-
v1 [18], ActivityNet v1.3 [12], and UCF101 [23].

SoccerNet-v1 is the predecessor of SoccerNet-v2, re-
leased by the same authors. It has 6,637 temporal anno-
tations, including three classes of actions (goal, card, and
substitution). SoccerNet-v1 contains fewer annotations and
thus longer intervals between actions than SoccerNet-v2.
There are no 120-second frame intervals containing more
than five actions in the SoccerNet-v1 dataset. On the con-
trary, SoccerNet-v2 has up to 14 actions in 120-second inter-
vals. ActivityNet v1.3 [12] is a large-scale dataset consisting
of 19,994 videos with 200 activity classes for action recog-
nition, temporal action proposal generation and detection.
The UCF101 dataset consists of 13,320 video clips, which
are classified into 101 categories. All the videos are col-
lected from YouTube and have a fixed frame rate of 25 FPS
with the resolution of 320 × 240.

Experiments were conducted for three video under-
standing tasks, action spotting, temporal action proposal

Table 8: Results on SoccerNet-v1. We use Average-mAP
to evaluate all methods.

Method Feature Extractor Average-mAP

NetVLAD ResNet+PCA 49.7
CALF ResNet+PCA 62.5
NetVLAD++ ResNet+PCA 61.1
Ours ResNet+PCA 65.0
Ours ResNet 68.1

Table 9: Results on ActivityNet v1.3 [12]. Evaluation
results in terms of AUC score for temporal action proposal
generation. The results are obtained on fully-supervised
training. SSTAP (+saliency) use frame saliency weighting
module to improve video presentation before the SSTAP
model.

Method AUC

SSTAP 67.5
SSTAP (+saliency) 67.6

generation, and action recognition.
SoccerNet-v1. In this experiment, we report Average-

mAP for evaluation. The results on SoccerNet-v1 are shown
in Table 8. Consistent with the results on SoccerNet-v2, the
proposed method achieves the highest Average-mAP with
68.1% using ResNet features, an increase of +7.0% over
NetVLAD++. An interesting observation is that in con-
trast to the SoccerNet-v2 dataset, CALF [2] outperforms
NetVLAD++ on the SoccerNet-v1 dataset. The loss function
in CALF defines six temporal segments around each ground-
truth action to include temporal relationships. When actions
occur frequently in a dataset such as SoccerNet-v2, their
temporal segments maybe overlap, resulting in decreasing
performance. Therefore, CALF is better suited for datasets
with fewer annotations and longer intervals between actions,
such as SoccerNet-v1.

ActivityNet v1.3. Using ActivityNet v1.3, we eval-
uate methods by the performance of temporal action pro-
posal generation. To adapt our approach to the task, we
add our saliency weighting module as the first module in
SSTAP [24], a recent method based on self-supervised learn-
ing for the detection of temporal actions, and develop the
SSTAP (+saliency) model. We measure the average recall
(AR) for different average numbers of proposals (AN) as
AR@AN, and calculate the area under the AR vs. AN curve
(AUC) as the metric on ActivityNet v1.3, where AN varies
from 0 to 100. The results are shown in Table 9. SSTAP
with our added saliency module improves the AUC score by
0.1%, confirming the effectiveness of the saliency module for
the task of generating temporal action proposals and improv-
ing video features. In addition, using the proposed module,
the importance of frames could be provided to interpret the
prediction of existing models.

UCF101 To confirm the effectiveness of the proposed
model for action recognition, we develop another model by
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Fig. 7: Saliency Score of the Archery Action.

Table 10: Action Recognition on UCF101. SlowFast(*) is
the combination model of SlowFast and the proposed model.

Model Accuracy

SlowFast 85.4
SlowFast(∗) 88.6

combining the proposed model with SlowFast [25], denoted
by SlowFast(*), and compare it with SlowFast using the
UCF101 [23] dataset. The SlowFast is pre-trained on Kinet-
ics 400 dataset [26]. As shown in Table 10, the performance
is improved by 3.2% by using the proposed model as an-
other branch. The proposed model could capture important
information that the SlowFast might miss.

To evaluate the interpretability of the proposed method,
the proposed method generates some saliency scores of the
archery action using the video from the UCF101 dataset, as
shown in Figure 7. The durations of the videos from the
UCF101 dataset are short and each video only contains one
type of action. Therefore most of the frames in the videos
are related to the action label. The saliency scores of these
videos are higher than other dataset. The saliency score
is high on the third frame, where a man is holding a bow
and an arrow than on other frames. The frame is related
to the archery action. Therefore, the proposed model could
recognize the action by locating keyframes.

5. Conclusion

In this paper we addressed the problem of redundant infor-
mation in videos by focusing on keyframes. We proposed the
saliency weighting module which weights frames according
to feature similarity to reduce the influence of redundant
frames and improve frame saliency and representation at
the same time. We analyzed the performance of our pro-
posed model and showed that the proposed model achieved
state-of-the-art accuracy on SoccerNet-v2, obtaining 57.3%
Average-mAP. Additionally, our proposed model obtains the
75.0% Average-mAP using embedding features. Further-
more, we indicate that our saliency weighting module can be
effectively applied to existing video understanding methods.
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