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Abstract

We present the application of 3D reconstruction tech-
nology to the inspection and decommissioning work at
the damaged Fukushima Daiichi nuclear power station in
Japan. We discuss the challenges of this project, such as the
difficult image capture conditions (including under water),
required use of limited imaging hardware, and capture by
personnel inexperienced in 3D reconstruction. We present
an overview of the system developed for this project, a real-
time reconstruction pipeline with robust camera pose es-
timation, low-latency probabilistic dense depth estimation
and a novel descriptor for point cloud alignment—the Co-
occurrence Histogram of Angle and Distance (CHAD). We
discuss the modifications required to standard algorithms
in order to perform reliably in such a scenario. As well
as quantitative evaluations of these components on existing
datasets, we show qualitative 3D reconstruction results of
debris from the damaged plant and its spent fuel pool. Such
results have enabled planning of the critical process of de-
bris removal, without the harmful requirement of extensive
human presence on site.

1. Introduction

Vision-based technology enables new inspection and
planning applications in challenging environments, with-
out the need for human presence, providing the potential
to greatly improve rescue and recovery efforts in dangerous
disaster areas. Decommissioning work at the Fukushima
Daiichi nuclear power station in Japan, which was severely
damaged in the aftermath of the 2011 Tohoku earthquake
and tsunami, is one such project.

An ongoing stage of this project is the removal of debris
such as steel beams, wires, and blocks of concrete, enabling
the remaining radioactive material to be made safe. Com-
puting a 3D reconstruction of the site as it stands, to which

CAD models can then be fitted to the various elements, is
a crucial task in this stage. It allows the planning of debris
removal to be undertaken in a safe environment, away from
the site, using CAD simulations.

In this work we demonstrate the application of vision-
based 3D reconstruction technology to the Fukushima
project. We discuss how this technology performs in real
and challenging scenes, and the improvements to standard
algorithms required for robust and reliable performance in
such scenes.

Vision technology has recently been employed in a num-
ber of similar projects, such as reconstruction of infrastruc-
ture for civil engineering [4, 13, 25], temporal change detec-
tion in the aftermath of a natural disaster [21], and real-time
3D mapping for robots assisting in disaster response [16].
However, the technology applied is heavily dependent on
the constraints of each particular scenario. We discuss the
constraints of the Fukushima project below.

1.1. Project challenges

Before discussing the technology, it is important to un-
derstand the challenges faced in this particular project. High
levels of radiation and structural instability make the site a
hazardous environment for workers. Remotely controlled
sensors therefore need to be used, but this is also challeng-
ing due to limited access. The debris to be removed is both
above and below water, the latter in the spent fuel pools, so
either a system that can work in both environments, or two
separate systems, is required. Cranes have been erected on
site, from which sensors can be hung, but wind and crane
motion means that the sensors are often swinging, so the
reconstruction pipeline needs to be robust to this. The ra-
diation also affects sensors, therefore special radiation (and
water) proof sensors must be used. The only such sensors in
existence are encased video cameras, with a narrow field of
view (approximately 30◦). The actual sensor setup used, a
radiation-proof video camera hung from a crane and moved
about, is shown in Fig. 1. One final challenge is that, due
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Figure 1: 3D reconstruction system at the Fukushima Daiichi
nuclear power station. Video captured with a radiation and water
proof camera suspended from a crane is transmitted wirelessly to
the operation room. The 3D structure is estimated in real-time,
providing real-time feedback to the on-site workers controlling the
crane.

to the sensitivity of the project, no 3D reconstruction ex-
perts have been able to help in the image capture process.
For this reason, it is important that the reconstruction sys-
tem used provides real-time feedback to the team control-
ling the crane, so that they know either that the images cap-
tured can provide an adequate reconstruction, or that some
further motion is required.

In the following section we describe our system, con-
sisting of camera pose estimation, multi-view stereo, and
relocalization. The method for registering 3D point clouds
from multiple capture sessions is described in Section 3.
We present quantitative evaluations of system components
in Section 4, and qualitative results of the complete system
in Section 5.

2. Our system
Our system consists of four main components: (1) real-

time, monocular camera pose estimation based on a key
frame SfM method, (2) real-time, monocular, video-based
multi-view stereo, (3) real-time, image-based relocaliza-
tion, and (4) registration of reconstructed point clouds using
a novel 3D descriptor. We describe each of these compo-
nents in the four subsections below, discussing earlier work
relevant to each component in their respective subsection.

2.1. Camera pose estimation

Camera pose estimation algorithms can be categorized
into online and offline approaches. Online methods cali-
brate images one by one, as they arrive, e.g. [6, 10, 17],
and generally make use of the temporal coherence of video
by tracking feature points. Offline methods calibrate many
images jointly in a single batch computation, e.g. [1, 24],
and tend to assume that the images are unordered and taken

from sparse viewpoints, hence match feature points using
descriptors. In this work we are dealing with video input,
and require real-time camera pose estimation in order to
provide reconstruction feedback to the operator, therefore
online methods are relevant. Three main categories of on-
line approach exist: methods which track and triangulate
sparse features in a probabilistic map, integrating informa-
tion using a Kalman filter [6]; methods which track and
triangulate sparse features in key frames using bundle ad-
justment, minimizing reprojection error [10]; finally, meth-
ods which construct a dense model of the scene and register
frames to this by minimizing photometric error [17]. We use
the second of these approaches, as it is robust to changes in
lighting/exposure, in contrast to the last category, and pro-
vides more accurate camera poses than the first category.

Our method follows the PTAM [10] approach, but with
the following changes. Firstly, we use a sparser set of more
reliable feature points: we find Shi-Tomasi corners [23]
in an input image (at the input scale only), order them by
eigenvalue, then greedily select corners whilst ensuring a
minimum distance from already selected corners. An ex-
ample of the extracted features is shown in Fig. 2. Fea-
tures are matched between frames using normalized cross-
correlation. The camera pose of the second key frame and
3D feature locations are estimated in closed form by de-
composing the essential matrix [11]. Camera pose is ob-
tained by matching 2D features to triangulated 3D features,
then solving the PnP problem using the non-linear method
in [8]. However, we only use 3D features whose angle be-
tween the rays to the current view and the nearest key frame
that feature was seen in is below a user defined threshold;
this ensures that we do not match features that are unlikely
to be visible.

An example on a toy data scene is shown in Fig. 3(b).
The estimated 3D point cloud is sparse and does not pro-
vide sufficient detail. However, a denser reconstruction can
be achieved by using the epipolar geometry to constrain fea-
ture matching to a 1D search along epipolar lines. This is
discussed next.

2.2. Multi-view stereo

Multi-view stereo algorithms take as input calibrated im-
ages, and produce a point cloud or mesh as output. They
can also be categorized into batch methods, which take
in a number of frames and produce a single reconstruc-
tion [1, 7, 22], and online methods, which process a frame
at a time, and output depth data as and when it is avail-
able [28, 30]. All these methods have a matching term,
which is aggregated over several frames. Batch meth-
ods then tend to have a regularization step, which aggre-
gates data across the entire image domain, which is why
they compute a single reconstruction. By contrast, online
methods tend to operate locally, so can reason about each



(a) PTAM feature points (b) Our feature points

Figure 2: Feature points for camera pose estimation. Input
image with feature points computed by (a) PTAM (colour indicates
scale features detected at), and (b) our feature detection method.

(a) (b)

(c)

Figure 3: 3D reconstruction example on a toy data set. (a) In-
put image with feature points (red), (b) 3D view of feature points
(red) and estimated camera trajectory (yellow), (c) 3D view of
dense reconstruction.

depth value independently, and provide a low-latency depth
estimate—areas with high depth certainty can be output im-
mediately. In terms of speed, batch methods are often slow
due to the regularization step, which can involve a costly
optimization, though several methods have been shown to
run at interactive speeds. Online methods generally work
faster, though not always at frame rate [30].

Due to the nature of our application, where accuracy is
crucial and completeness is not, regularization is not so im-
portant because we do not wish to estimate the depth of
less certain areas and risk getting it wrong. Also, a low-
latency system is preferable, in order to provide the user
with feedback as quickly as possible. For this reason we
use the online approach in [28], which is outlined in Fig. 4.

(a)

(b)

Figure 4: Motion-based monocular stereo. (a) Reference view
and two views after camera motion. Given camera poses, image
patches are matched along their epipolar lines. Matching costs
over several frames are aggregated, shown for a single pixel in (b),
where the posterior distribution of depth for each pixel is modelled
using a compact parametric model.

It initializes a set of image patches (we call them “seeds”)
in a particular image, then matches these along their respec-
tive epipolar lines in subsequent images, using normalized
cross-correlation. Matches are then used to update a proba-
bilistic model for the depth of each patch, parameterized as
a Gaussian distribution on inverse depth times a Beta distri-
bution on the likelihood of being an inlier. This probabilistic
approach both provides robustness to errors, and allows us
to output a seed as a 3D point when it reaches a threshold
depth accuracy and inlier probability. Because of the highly
parallel nature of this algorithm, we implement it on a GPU,
and match half a million seeds per frame.

2.3. Image-based relocalization

As described in 2.1, 3D camera motion is estimated by
tracking features, therefore if the image motion is large
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Figure 5: 3D Feature Descriptors. Local descriptors are com-
puted in a 3D neighbourhood around a point (a). The Fast
Point Feature Histogram (FPFH) feature descriptor computes his-
tograms over angles between pairs of normals (b, c) [20]. The pro-
posed Co-occurrence Histogram of Angle and Distance (CHAD)
feature descriptor (d, e) computes 2D histograms of quantities
computed from normals and point distances.

then tracking, and consequently camera pose estimation,
can fail. This is a particular problem in our application as
the radiation-proof camera has a narrow field of view, and
the wind can cause significant camera, and therefore image,
motion. In order to maintain a consistent reconstruction be-
tween tracking failures, fast and robust relocalization is re-
quired. We use image-based relocalization to recover cam-
era pose, similar to the methods proposed in [12, 29], as
this offers the lowest latency system possible, allowing re-
localization from just one frame. Once the estimated cam-
era motion exceeds a certain threshold in 3D position or
angle, a new key frame is defined from which features are
extracted [23] and added to a landmark database. For each
feature in the key frame we compute an ORB descriptor [19]
over four multi-resolution pyramid levels. When tracking
fails, we find the closest database match for each feature
in the new image based on the Hamming distance, which
is efficiently computed using SSE instructions. Given the
matches from 3D landmarks to 2D image points, we solve
the resulting PnP problem to compute camera pose by non-
linear optimization, initialized using the direct linear trans-
form solution and non-linear optimization [26].

3. Point cloud registration

A post-processing stage of our reconstruction pipeline
is to combine multiple point clouds, estimated from dif-
ferent video sequences, in a single, consistent coordinate

frame. Point clouds are first crudely aligned, then the iter-
ated closest point algorithm [2] is used to refine their rela-
tive pose. Approximate alignment is achieved by matching
descriptors of 3D feature points, then using a hypothesize-
and-test framework, here PROSAC [5], to compute a pose
(using [27]) and reject mismatches. The feature points are
extracted from each point cloud using a 3D extension of the
standard 2D Harris detector, and descriptors are computed
for each feature point.

3D point cloud descriptors can be categorized accord-
ing to how they achieve rotational invariance. Some meth-
ods compute a robust local coordinate frame at each feature
point, e.g. using PCA, then compute a rotationally variant
descriptor in that coordinate frame. The Spin Image [9]
is an example of this type. However, this approach re-
lies on the repeatable computation of the local coordinate
frame, which can be sensitive to noise. Other methods
construct a descriptor that itself has rotational invariance.
The Fast Point Feature Histogram (FPFH) [20] and our pro-
posed method belong in this category. Fig. 5(b, c) give an
overview of the FPFH descriptor. The descriptor is defined
by a feature point p0 and points pi in a local neighbour-
hood, see Fig. 5(a), as well as their normal vectors, n0,ni,
respectively. The descriptor consists of 1D histograms of
angles α, θ, and φ, describing the relative orientation of n0

and ni:

α = nT
i v,

θ = atan2(nT
i w,n

T
i n0),

φ =
1

d
(pi − p0)

Tn0 , (1)

where d = ‖pi−p0‖, v = n0×(pi−p0)/d, w = n0×v.
Here we propose the Co-occurrence Histogram of Angle
and Distance (CHAD) descriptor to capture local 3D shape.
CHAD is a hybrid of the best parts of the Spin Image and
FPFH descriptor methods. The 2D co-occurrence histogram
of the Spin Image has higher descriptive power than the
1D histogram of FPFH, whilst the relative relation between
two points of the FPFH preserves rotation invariance with-
out requiring the computation of a local coordinate frame.
Fig. 5(d, e) show an overview of the CHAD descriptor. We
use the distance d between pi and p0 as well as two angles:
θ1, between n0 and ni, and θ2, the angle between ni and
the translation vector (pi − p0):

θ1 = arccos
(
|nT

0 ni|
)
,

θ2 = arccos

(
1

d
|(pi − p0)

Tni|
)
,

d = ‖pi − p0‖. (2)

We create separate 2D co-occurrence histograms of d and
θ1 and of d and θ2. The dimension of the CHAD descrip-
tor is D × (T1 + T2), where D, T1, and T2 are the number



of quantization bins of d, θ1, and θ2, respectively. Descrip-
tor matches are found via exhaustive search using the Eu-
clidean distance.

4. Component evaluation

The system presented consists of several standard com-
ponents, to which we have made some changes to improve
performance. Whilst the main purpose of this system is the
realtime reconstruction of the Fukushima Daiichi power sta-
tion, for reasons of confidentiality we do not have access to
the input data captured there, nor is there any ground truth
available. Therefore, in order to provide a comparative eval-
uation of our system, we have evaluated the camera pose
estimation, multi-view stereo and point cloud registration
system components on standard datasets. The results are
described below.

4.1. Camera pose estimation

We ran our proposed method on the synthetic Tsukuba
stereo sequence [14, 15], which provides ground truth cam-
era pose and scene depth. We use the publicly available im-
plementation of PTAM [10] as a baseline, as our method is
based on this approach. Results for both methods are shown
in Fig. 6, where (a) shows that our proposed method tracks
the ground truth camera angle well, with very little drift,
whilst PTAM becomes error ridden after about 200 frames,
and loses track completely before 600, and (b) shows that
our method has a much lower proportion of large errors
in both translation and rotation estimates between consec-
utive frames. This demonstrates the improved robustness
provided by our feature selection and feature matching, de-
scribed in section 2.1.

4.2. Multi-view stereo

We also evaluated our implementation of the real-time
multi-view stereo method [28] on the Tsukuba dataset [14,
15], using the ground truth camera poses. Seeds are cre-
ated in each frame, and a proportion of these are output as
3D points; the ratio of the two, completion rate, is plotted
against frame number and also alongside camera rotation
rate, in Fig. 7(c), showing that frames succeeded by large
rotations have a lower completion rate. This is because
large rotations tend to mean that seeds do not get matched
in enough frames to meet the output criteria. Fig. 7(a) and
(b) show results on the depth accuracy of output 3D points
in the frames they were initialized in. Fig. 7(a) shows that
there is a strong correlation between depth and depth er-
ror, but that depth error is in the region of 0.1 to 0.01 times
the depth. Since depth is computed via triangulation, errors
tend to be constant in inverse depth space. Fig. 7(b) shows
that precision is high in this space, providing an accuracy of
2× 10−4cm−1 or less for 70% of the points.

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500 600 700 800 900

Ro
ta

ti
on

 a
ng

le
 [r

ad
]

Frame No.

Proposed method
Ground truth

PTAM

(a) Frame no. vs. camera angle

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1
PTAM rot.

PTAM trans.

Ours rot.

Ours trans.

Error threshold

P
ro

po
rt

io
n 

of
 f

ra
m

e-
to

-f
ra

m
e 

er
ro

rs
 b

el
ow

 th
re

sh
ol

d

(b) Frame-to-frame errors

Figure 6: Camera pose estimation accuracy. (a) A plot of cam-
era rotation angle (relative to the first frame) across frames. (b)
Error-proportion curves for frame-to-frame errors in rotation and
translation.

4.3. 3D Registration

We compared the performance of our CHAD descriptor
for point clouds against the Spin Image and FPFH descrip-
tors on which it is based. We used raw range data from
the public Stanford Scanning Repository [18]. The dataset
contains 3D point clouds of various objects captured from
different view points.

In our experiments, descriptors are computed at 3D Har-
ris corners. The descriptor sizes of Spin Image, FPFH, and
CHAD are 153, 33, and 156, respectively.

Fig. 8(a) shows the matching performance of 3D fea-
ture points. On all data sets the proposed CHAD descrip-
tor obtains the best performance, with the Spin Image and
FPFH descriptors performing similar to each other on aver-
age. The matching rate is low on the “bun315”, “top3”, and
“chin” point clouds because of the lower number of overlap-
ping feature points. A match is defined by a threshold on the
Euclidean distance between descriptor pairs. In the experi-
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Figure 7: Multi-view stereo accuracy. (a) Depth errors across all 1800 frames of Tsukuba, histogrammed against ground truth depth.
(b) Error-proportion curves in inverse depth space for all frames, with the average shown in red. (c) Completion rate (blue) and camera
rotation rate (green) plotted against frame number.

(a)

(b)

Figure 8: Evaluation of 3D descriptors. (a) Correct match-
ing percentages of different descriptors on range data from the
Stanford Scanning Repository [18]. The proposed CHAD descrip-
tor achieves a consistently higher number of correct matches. (b)
shows 3D registration results on the same data set.

ments these thresholds are set for each descriptor such that
the number of matched pairs is similar. Fig. 8(b) shows suc-
cessful registration results using CHAD on range data, ex-
cept for “Whole-bun045” which shows the “bun045” scan
registered to the whole bunny 3D point cloud.

5. Fukushima reconstruction

In this section we present 3D reconstruction results cap-
tured at Fukushima Daiichi. Intrinsic parameters for the
radiation-proof camera were computed in advance [3]. The
underwater capture required separate calibration due to a
different refraction index between the lens and water. Cam-
era parameters were switched manually during the capture
process. Fig. 9 shows reconstruction results captured at
Fukushima Daiichi. The top row shows example frames
from original underwater footage (a), the capture setup (b),
and the final 3D CAD model (c). The bottom two rows
show point clouds during the reconstruction process, above
(d) and below (e) water, as well as the estimated camera
trajectories. The trajectories indicate the swinging motion
of the crane-mounted camera. The 3D CAD model (c) was
created manually based on the dense 3D point clouds. It was
used to estimate the centre of gravity of debris parts as well
as their size and connectivity, thereby aiding the planning
of their removal. The reconstruction system runs at 37ms
per frame, implemented on a laptop with Intel R©CoreTMi7
processor and Nvidia R©GeForce R©GTXTMGPU.

6. Summary

This paper presented a system for assisting in the chal-
lenging clean-up project at the Fukushima Daiichi nuclear
power station. We described four main system components,
including point cloud registration with a new descriptor
(CHAD), explained the design of each component, and pro-
vided quantitative evaluations of their performance. Finally
we have provided qualitative results of the 3D reconstruc-
tion of the Fukushima Daiichi power station.



(a) Underwater images of the spent
fuel pool

(b) Capture set-up (c) 3D CAD model built manually from the re-
constructed point cloud

(d) Above water 3D reconstruction

(e) Underwater 3D reconstruction

Figure 9: Reconstruction of the spent fuel pool at Fukushima Daiichi. The system is used to reconstruct 3D structure from underwater
scenes of a spent fuel pool (a) using a radiation and water proof camera (b). The final result is a CAD model (c), which is used to plan
decommissioning work. It is created by manually fitting surfaces to reconstructed point clouds (d and e). Reconstructed points are shown
in blue, the camera trajectories in yellow.



References
[1] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and

R. Szeliski. Building rome in a day. In ICCV, pages 72–
79, September/October 2009. 2

[2] P. J. Besl and N. D. McKay. A method for registration of 3-D
shapes. TPAMI, 14(2):239–256, 1992. 4

[3] J. Y. Bouguet. Camera calibration toolbox for matlab.
http://www.vision.caltech.edu/bouguetj/calib doc/. 6

[4] I. Brilakis, H. Fathi, and A. Rashidi. Progressive 3D recon-
struction of infrastructure with videogrammetry. Automation
in Construction, 20(7):884–895, 2011. 1

[5] O. Chum and J. Matas. Matching with PROSAC progressive
sample consensus. In CVPR, pages 220–226, 2005. 4

[6] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.
MonoSLAM: Real-time single camera SLAM. TPAMI,
26(6):1052–1067, 2007. 2

[7] Y. Furukawa and J. Ponce. Accurate, dense, and robust mul-
tiview stereopsis. TPAMI, 32(8):1362–1376, 2010. 2

[8] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2003. 2

[9] A. E. Johnson and M. Hebert. Using spin images for efficient
object recognition in cluttered 3D scenes. TPAMI, 21(5):433
–449, May 1999. 4

[10] G. Klein and D. Murray. Parallel tracking and mapping for
small AR workspaces. In ISMAR, November 2007. 2, 5

[11] Z. Kukelova, M. Bujnak, and T. Pajdla. Polynomial eigen-
value solutions to the 5-pt and 6-pt relative pose problems.
In BMVC, pages 1–10, 2008. 2

[12] H. Lim, S. N. Sinha, M. F. Cohen, and M. Uyttendaele. Real-
time image-based 6-DOF localization in large-scale environ-
ments. In CVPR, pages 1043–1050, 2012. 4

[13] J. Martinez-Carranza, A. Calway, and W. Mayol-Cuevas. En-
hancing 6D visual relocalisation with depth cameras. In
IROS, 2013. 1

[14] M. P. Martorell, A. Maki, S. Martull, Y. Ohkawa, and
K. Fukui. Towards a simulation driven stereo vision system.
In ICPR, pages 1038–1042, 2012. 5

[15] S. Martull, M. P. Martorell, and K. Fukui. Realistic CG
stereo image dataset with ground truth disparity maps. In
Proc. ICPR Workshop TrakMark2012, pages 40–42, 2012. 5

[16] E. Molinos, A. Llamazares, N. Hernndez, R. Arroyo,
A. Cela, J. J. Yebes, M. Ocaa, and L. M. Bergasa. Percep-
tion and navigation in unknown environments: The DARPA
robotics challenge. Advances in Intelligent Systems and
Computing, 253, 2014. 1

[17] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison.
DTAM: Dense tracking and mapping in real-time. In ICCV,
2011. 2

[18] The Stanford 3D Scanning Repository. http://www-
graphics.stanford.edu/data/3Dscanrep/. 5, 6

[19] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB:
An efficient alternative to SIFT or SURF. In ICCV, pages
2564–2571, November 2011. 4

[20] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature
histograms (FPFH) for 3D registration. In ICRA, May 2009.
4

[21] K. Sakurada, T. Okatani, and K. Deguchi. Detecting changes
in 3D structure of a scene from multi-view images captured
by a vehicle-mounted camera. In CVPR, 2013. 1

[22] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
A comparison and evaluation of multi-view stereo recon-
struction algorithms. In CVPR, volume 1, pages 519–526,
2006. 2

[23] J. Shi and C. Tomasi. Good features to track. In CVPR, pages
593–600, 1994. 2, 4

[24] N. Snavely, S. Seitz, and R. Szeliski. Modeling the world
from internet photo collections. Int. J. Comput. Vision,
80(2):189–210, 2008. 2

[25] S. Stent, R. Gherardi, B. Stenger, K. Soga, and R. Cipolla.
An image-based system for change detection on tunnel lin-
ings. In Machine Vision and Applications, pages 359–362,
2013. 1

[26] R. Szeliski. Computer Vision: Algorithms and Applications.
Springer, 2011. 4

[27] S. Umeyama. Least-squares estimation of transformation
parameters between two point patterns. TPAMI, 13(4):376–
380, 1991. 4

[28] G. Vogiatzis and C. Hernandez. Video-based, real-time
multi-view stereo. In Image and Vision Computing, vol-
ume 29, pages 434–441, 2011. 2, 3, 5

[29] B. Williams, G. Klein, and I. Reid. Real-time SLAM relo-
calisation. In ICCV, 2007. 4

[30] O. J. Woodford and G. Vogiatzis. A generative model for
online depth fusion. In ECCV, 2012. 2, 3

Product names mentioned in this paper are trademarks
of their respective companies.


