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Abstract The non-Euclidean nature of direct isome-
tries in a Euclidean space, i.e. transformations con-
sisting of a rotation and a translation, creates diffi-
culties when computing distances, means and distribu-
tions over them, which have been well studied in the
literature. Direct similarities, transformations consist-
ing of a direct isometry and a positive uniform scal-
ing, present even more of a challenge—one which we
demonstrate and address here. In this article, we in-
vestigate divergences (a superset of distances without
constraints on symmetry and sub-additivity) for com-
paring direct similarities, and means induced by them
via minimizing a sum of squared divergences. We an-
alyze several standard divergences: the Euclidean dis-
tance using the matrix representation of direct similari-
ties, a divergence from Lie group theory, and the family
of all left-invariant distances derived from Riemannian
geometry. We derive their properties and those of their
induced means, highlighting several shortcomings. In
addition, we introduce a novel family of left-invariant
divergences, called SRT divergences, which resolve sev-
eral issues associated with the standard divergences. In
our evaluation we empirically demonstrate the derived
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properties of the divergences and means, both quali-
tatively and quantitatively, on synthetic data. Finally,
we compare the divergences in a real-world application:
vote-based, scale-invariant object recognition. Our re-
sults show that the new divergences presented here, and
their means, are both more effective and faster to com-
pute for this task.
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1 Introduction

Direct isometries in Euclidean geometry, which are trans-
formations consisting of a rotation and a translation
(Coxeter, 1961, §3), are relatively common in the lit-
erature, finding use in applications such as 2D object
detection (Leibe et al, 2008; Opelt et al, 2008; Shotton
et al, 2008), motion segmentation (Subbarao and Meer,
2009) and interpolation (Zefran and Kumar, 1998), 3D
object recognition and registration (Drost et al, 2010;
Knopp et al, 2010; Pennec and Thirion, 1997; Tombari
and Di Stefano, 2010), and 3D camera pose estimation
e.g. (Hartley and Zisserman, 2004). The non-Euclidean
nature of this transformation space, specifically due to
the rotation component, though encumbering, has been
addressed previously (Agrawal, 2006; Park, 1995; Pen-
nec and Thirion, 1997). By contrast, a direct similar-
ity (Coxeter, 1961, §5), a transformation consisting of
a direct isometry with a positive uniform scaling, in-
troduces a further challenge, due to the interactions
of scale with both rotation and translation (Arsigny
et al, 2006b; Poincaré, 1882), that has received little
attention (Bossa and Olmos, 2006; Eade, 2011; Pham
et al, 2011; Strasdat et al, 2010). Consequently, far
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fewer methods include variable scale (Bossa and Ol-
mos, 2006; Khoshelham, 2007; Pham et al, 2011; Stras-
dat et al, 2010; Woodford et al, 2013). However, doing
so enables methods to be scale-invariant, which is a de-
sirable property when the absolute scale of data is un-
known, such as in non-metric reconstructions, or when
there is high intra-class scale variation.

This article concerns itself with direct similarities,
and in particular, divergences1 between such transfor-
mations. Divergences are the key component of many
tasks, such as comparing, clustering, averaging, embed-
ding, kernel density estimation and other forms of prob-
ability distributions. We compare several divergences
in direct similarity space (written as DS(n), where n
is the dimensionality of the Euclidean space on which
the transformations act): the Euclidean distance using
the matrix representation of direct similarities, a diver-
gence derived from Lie group theory, which we call the
Lie divergence, the family of all left-invariant distances
derived from Riemannian geometry, and a new fam-
ily of left-invariant divergences, called SRT divergences,
which we introduce here. We enumerate the properties
of all aforementioned divergences, and those of their
induced means via minimizing sum of squared diver-
gences. We show that the existing divergences have vari-
ous issues, including variance to scale, bias2 and means
without closed-form solutions, which are resolved by
SRT divergences. We verify these properties empiri-
cally, both qualitatively and quantitatively, on synthetic
data. Lastly, we demonstrate the benefits of using SRT
divergences in scale-invariant 3D object recognition, in
which divergences are applied to kernel density estima-
tion (Parzen, 1962; Rosenblatt, 1956) and mean shift
optimization (Cheng, 1995).

The novel contributions of this work3 are as follows:

1. Analysis of the Euclidean distance, including a closed
form for computing means, showing they are biased
in scale.

2. Closed forms for the matrix exponential function
and its inverse, mapping between direct similarities
in DS(n) (with n = 2 or 3) and tangent vectors at
the identity element of DS(n).

1 Divergences are a superset of distances, defined in §2.1.1.
2 Bias is defined in §2.1.2.
3 Preliminary work from this article appears in (Pham et al,

2011), where contributions 1, 3, 5 and 6 are briefly reported. In
addition to more detail and experiments here, we further intro-
duce: i. closed-form Euclidean means and closed-form Lie diver-
gences; ii. proofs that the Lie divergence and all left-invariant
distances induce biased means; iii. an extension of the SRT di-
vergence (Pham et al, 2011) to a family of SRT divergences
with closed-form means.

Fig. 1 A mean of three direct similarities in 3D. The origin
and the orientation of a frame represent the translation and
the rotation of the corresponding direct similarity, while the
length of the axes represents the scale.

3. Analysis of the Lie divergence derived from the ma-
trix exponential function, including a proof that any
induced mean is scale-biased.

4. Analysis of all left-invariant Riemannian distances,
proving any induced mean is scale-biased.

5. Proposal of a new family of efficient, left-invariant
divergences, called SRT divergences, with closed form
means (orders of magnitude faster to compute than
means induced by intrinsic divergences). In particu-
lar, a member of the family induces unbiased means.

6. Experimental results on synthetic data and in 3D
scale-invariant object recognition, demonstrating im-
proved performance using the new SRT divergences.

The rest of the article is organized as follows: The next
section provides background about DS(n), and diver-
gences, means and distributions in it. In §3–6, we dis-
cuss the Euclidean distance, the Lie divergence, the
family of left-invariant Riemannian distances, and the
novel family of left-invariant SRT divergences respec-
tively. Experimental results on synthetic data and on
3D scale-invariant object recognition are presented in
§7, then §8 concludes the article. Proofs for theorems
and lemmas are located in Appendix A.

2 Background

2.1 Overview of DS(n)

A direct similarity refers to an n-dimensional transfor-
mation containing concurrently a positive uniform scal-
ing, a rotation, and a translation. In 2D and 3D spaces,
direct similarities can be visualized by Cartesian local
frames, as illustrated in figure 1.
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Direct similarities of an n-dimensional Euclidean
space span a space called the direct similarity group
(Schramm and Schreck, 2003), denoted by:

DS(n) :=
{[

sR t
0 1

]
: s ∈ R+,R ∈ SO(n), t ∈ Rn

}
,

(1)

where SO(n) is the group of n-dimensional rotation
matrices and 0 denotes an all zero vector (or matrix)
of the appropriate size. DS(n) belongs to the family of
matrix Lie groups under matrix multiplication. Its di-
mension is nds := n(n+1)

2 +1. Since DS(n) is a subgroup
of the affine transformation group, we writem (A,b) :=[

A b
0 1

]
as a direct similarity and M (A,b) :=

[
A b
0 0

]
as a tangent vector in DS(n) represented as a ma-
trix. For notational convenience, given X ∈ DS(n), let
the scale, rotation and translation components of X
be denoted by Xs, Xr and Xt respectively, such that
X = m (XsXr,Xt).
DS(n) is a subgroup of the general linear group

GL(n+1), with identity element In+1 (In being the n-
by-n identity matrix). It can be constructed from three
subgroups: the group of direct dilations (Coxeter, 1961,
§5) D(n) := {m (sIn,0) : s ∈ R+}, the rotation group
R(n) := {m (R,0) : R ∈ SO(n)} and the translation
group T (n) := {m (In,x) : x ∈ Rn}, via the following
equation:

DS(n) = (D(n)×R(n)) o T (n), (2)

where × and o denote the direct product and right
semidirect product of groups. It is oriented and con-
nected, making integration definable.

Although R(n) is compact, the other spaces D(n)
and T (n) are not, making DS(n) locally compact (since
it is a matrix Lie group) but not compact. As will be
shown in subsequent sections, this fact causes a problem
when working with the Lie divergence and left-invariant
distances.

When discussing differentiating a function defined
in DS(n), a map that parameterizes elements of DS(n)
minimally by nds-dimensional vectors is required. Con-
sider the following map φ : Rnds → DS(n):

φ(x) := m
(

exsex×
r ,xt

)
, (3)

where xs := x1 denotes the first component of x, i.e.
the log-scale, xr denotes the vector containing the next
nr := n(n−1)

2 components of x, i.e. the rotation vector,
xt denotes the vector containing the last n components
of x, i.e. the translation vector, and the cross operator
×, converts a nr-dimensional vector into a n-by-n skew-
symmetric matrix (see §A.1 for the definition). In R3,

the cross operator resembles the cross product of 3D
vectors, i.e. a×b = a × b. Function ex×

r denotes the
matrix exponential series, given by:

eZ :=
∞∑
k=0

Zk/k!, (4)

for any square matrix Z. Let Js := {1} be the set of
scale coordinates, Jr := {2, .., nr + 1} be the set of
rotation coordinates, and Jt := {nr + 2, .., nds} be the
set of translation coordinates.

2.1.1 Divergences in DS(n)

A distance function d : G × G → R for some space G
defines a notion of dissimilarity between elements of G.
Typically, a distance satisfies the following four axioms
which define a metric. For all x, y, z ∈ G:

1. non-negativity: d(x, y) ≥ 0,
2. coincidence: d(x, y) = 0⇔ x = y,
3. symmetry: d(x, y) = d(y, x),
4. sub-additivity: d(x, y) + d(y, z) ≥ d(x, z).

In this paper we use “distance” to refer to a metric, i.e.
a function that does satisfy all four conditions above.
Semimetrics are a superset of metrics which drop the
requirement of symmetry, requiring only conditions 1,2
and 4. Divergences, also sometimes referred to as qua-
sisemimetrics, form a further superset of metrics which
also drop the requirement of sub-additivity, requiring
only conditions 1 and 2.

As well as determining which of the above condi-
tions are met for each divergence considered, we further
determine whether each divergence is left-invariant. Left-
invariance implies invariance to scaling, rotation and
translation altogether, and vice versa, and is thus an
important property in many applications. Indeed, we
focus our study on left-inavriant divergences.

Whilst rotation and translation invariance are al-
most always desirable, scale invariance is only neces-
sary when the absolute scale of the coordinate system
is unknown, e.g. in non-metric 3D reconstruction, or
when scale is known to vary, e.g. in 3D object recog-
nition where each class of objects contains instances of
differing size.

2.1.2 Means in DS(n)

Means can summarize a set. They are involved in many
methods and models, such as k-means, mixture of Gaus-
sians, mean shift etc.

A note on notation: we use a variant of Einstein
summation convention, whereby if an iterable index is
underlined, we take the smallest expression containing
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all occurences of that index, iterate the index over all
possible values, and sum up the terms. For example, an
arithmetic mean can be written as:

wiXi/wj :=
∑N
i=1 wiXi∑N
j=1 wj

. (5)

This notation simplifies many expressions in the article.
In a Euclidean space, the arithmetic mean mini-

mizes

E(X) := wid(Xi,X)2, (6)

where d(·, ·) is the Euclidean distance. In a differen-
tiable manifold G, arithmetic means may not exist. How-
ever, the term E(X), a measure of variance, is still
a valid function if d(Xi,X) are well-defined for all i.
When d is a metric, the most common way to proceed
is to define a mean as an element that minimizes E(X)
(Fréchet, 1948; Karcher, 1977):

X̄ := argmin
X∈G

E(X). (7)

Strictly speaking, there may be cases where X̄ is not
unique. However, a recent study (Arnaudon and Miclo,
2014) shows that in complete manifolds such cases oc-
cur in a subset of a null measure, implying that X̄ is
almost surely unique.

There are other ways to define a mean in the litera-
ture. The distance in equation (6) can be raised by any
power ρ ≥ 1, leading to ρ-means (e.g. (Fréchet, 1948)).
Instead of minimizing a function, a mean can be de-
fined as a solution to a barycenter equation, leading to
bi-invariant means (Arsigny et al, 2006b). We restrict
this article to means defined by equations (6) and (7)
and refer to any solution of them as a mean induced
by the distance d. This definition guarantees conver-
gence of Gaussian mean shift to a minimal energy level
(Carreira Perpinan, 2007), since at each step of mean
shift E(X) (for fixed weights wi) is decreased. Such a
property is not readily available with other definitions.
Although the definition does not guarantee uniqueness
of the mean, with respect to the distances to be dis-
cussed in the article, it almost surely does.

Pennec and Ayache (1998) proved that if d is left-
invariant, means induced by d are (left-)equivariant: if
all input Xi are multiplied by a same matrix Z, the
new mean equals the old mean multiplied by Z.

In addition, all these properties still hold if d is re-
laxed from a distance to a divergence.

While left-invariance ensures that means behave con-
sistently, it does not reveal whether a mean is biased,
where bias is defined as:

Definition 1 Let X be a mean of a set {(Xi,wi) ∈
DS(n)×R+}Ni=1 ofN direct similarities Xi with weights
wi > 0 induced by a given divergence function d.

– If X1;s = X2;s = . . . = XN ;s 6= Xs, X is biased in
scale, or scale-biased.

– If X1;r = X2;r = . . . = XN ;r 6= Xr, X is biased in
rotation, or rotation-biased.

– If X1;t = X2;t = . . . = XN ;t 6= Xt, X is biased in
translation, or translation-biased.

As we shall see in subsequent sections, some divergences
induce means which are scale-biased, e.g. figures 2 and
3, biased due to variation in rotation and translation
components respectively. However, analyzing the be-
haviour of means for each component, as we do in The-
orems 1, 2 and 3, is most easily achieved by limiting
variation in input direct similarities to that component
alone. To enable this, we introduce a further set of def-
initions regarding compatibility:

Definition 2 Let X be a mean of a set {(Xi,wi) ∈
DS(n)×R+}Ni=1 ofN direct similarities Xi with weights
wi > 0 induced by a given divergence function d.

– X is compatible to a scale mean, or scale-compatible,
if it is neither biased in rotation nor in translation.
In other words, when all input rotations are the
same and all input translations are the same, the
mean does not have a different rotation and trans-
lation from these.

– Likewise, X is compatible to a rotation mean, or
rotation-compatible, if it is neither biased in scale
nor in translation.

– Finally, X is compatible to a translation mean, or
translation-compatible, if it is neither biased in scale
nor in rotation.

2.1.3 Distributions in DS(n)

Probability distributions play a fundamental role in
many inference techniques. The parameterization of such
distributions often relies on a combination of kernels
around particular points in the space in question. The
classic example of such a kernel K(·) is the Gaussian
kernel, exp

(
− ·

2σ2

)
, where σ is the bandwidth of the

kernel, a single instance of which defines the normal dis-
tribution. Other distributions may be constructed from
sums of kernels, e.g. mixture of Gaussians, kernel den-
sity estimates, or products of kernels, e.g. product of
experts. These kernels often take as input a divergence
between two points in the space. For example, a kernel
density estimate (Parzen, 1962; Rosenblatt, 1956) PDF
can be written as

f̂(X) := wiζ(Xi)−1K(d(Xi,X)2). (8)
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where X is the random variable, (Xi,wi)Ni=1 is a collec-
tion of input points Xi with weight wi ≥ 0, wi = 1, and
ζ(Xi) is the volume density function which normalizes
K(d(Xi, ·)2).

While ζ(Xi) is a constant in a Euclidean space, it is
not generally constant in a non-Euclidean space (Pel-
letier, 2005; Subbarao and Meer, 2009). A common so-
lution to this problem is to simply assume that ζ(Xi)
is a constant, i.e. independent of Xi, allowing many
standard inference algorithms to be used, for example
mean shift on kernel density estimates over Rieman-
nian manifolds (Subbarao and Meer, 2009). However,
Pham et al (2011) proved that if the divergence d(·, ·)
is left-invariant, ζ(Xi) are constant and can be ignored.

3 Euclidean Distance

Any matrix Lie group G is by definition a subgroup of a
general matrix Lie group GL(n) ≈ Rn2 of n-by-n non-
singular matrices. The most straightforward divergence
in G is the Euclidean distance in the ambient Euclidean
space Rn2 , given by:

dE(X,Y) := ‖X−Y‖F , (9)

where ‖Z‖F :=
√

trace(ZTZ) denotes the Frobenius
norm. Under dE, the mean of matrices (Xi)Ni=1 with
weights (wi)Ni=1, becomes an arithmetic mean wiXi/wj
in the space Rn2 . However, since we only consider ma-
trices in G, we rely on equation (7) to define and to find
the mean. This mean is known in the literature as the
extrinsic Euclidean mean (Bhattacharya and Patrange-
naru, 2003).

As the Euclidean distance is not invariant to scaling
(Pham et al, 2011), the weights wi computed at every
iteration of mean shift become scale-biased, leading to
output poses with smaller scales. In (Pham et al, 2011),
extrinsic Euclidean means are computed by minimizing
equation (6). In contrast, the following lemma presents
efficient formulæ for computing them.

Lemma 1 (Proof in §A.2) The mean X of a set
{(Xi,wi) ∈ DS(n) × R+}Ni=1 of N direct similarities
Xi with weights wi induced by the Euclidean distance
is given by:

Xs = trace(wiXi;sX
T
i;rXr)/(nwj), (10)

Xr = sop(wiXi;sXi;r), (11)
Xt = wiXi;t/wj , (12)

where Xi;s, Xi;r and Xi;t respectively are the scale, ro-
tation, and translation components of direct similarities
Xi for i = 1, . . . , N .

Scale<1

Rotation only Rotation & scale

A

B

μ(A,B)

μ(A,B)A

B

Scale=1

Fig. 2 Scale bias of an extrinsic Euclidean mean. Let us
consider DS(2) (without translation): on a plane, a rotation can
be represented as a point on a circle, the radius being the scale.
Left: with rotation only, the arithmetic mean of A and B leads
to a smaller scale but the reprojection onto the manifold (i.e.
the unit circle) gives a reasonable result. Right: with rotation
and scale, the mean is already on the manifold, but with a
smaller scale.

In lemma 1, sop(X) is defined as the matrix function
that returns the rotation matrix closest to matrix X
with respect to the Frobenius norm, i.e. sop(X) :=
argminY∈SO(n) ‖Y−X‖F. If X is decomposed into X =
Udiag(a1 . . . , an)VT for some orthogonal matrices U,V ∈
O(n,R) and singular values a1 ≥ . . . ≥ an ≥ 0 via
singular-value decomposition, the function sop(X) com-
putes (Schönemann, 1966):

sop(X) = Udiag(1, . . . , 1,det(UV))VT. (13)

Simply by inspecting (10), we see that the scale com-
ponent of a mean is biased due to rotations, as illus-
trated in figure 2.

4 Lie Divergence

Another divergence arises from Lie group theory (Sub-
barao and Meer, 2009). Given a matrix Lie group G ⊂
GL(n) for some dimension n, the Lie algebra g of G
is the tangent space at In, i.e. g := TInG, which is a
vector space. At any point X ∈ G, there is a (left-)Lie
exponential map (Hall, 2003) which sends elements of
g to nearby points around X via integral curves, given
by:

ExpX : g→ G : ExpX(Z) := XeZ, (14)

where eZ is defined in equation (4). Since g is a lin-
ear algebra, one can use the inverse map Exp−1

X which
works locally (to be discussed in §4.1) to send a point Y
near X back to g, and define the norm of the returned
element as the divergence from X to Y, given by:

dL (X,Y) :=
∥∥ln(X−1Y)

∥∥
F , (15)



6 M-T Pham, O Woodford, F Perbet, A Maki, R Gherardi, B Stenger, R Cipolla

where ln(·) is the principal matrix logarithm (defined
in §4.1). We refer to this divergence as the Lie diver-
gence4,5,6.

4.1 Matrix Exponential and Logarithm in DS(n)

Working with the Lie divergence involves working with
the matrix exponential and its inverse, called the princi-
pal matrix logarithm. Strictly speaking, only the princi-
pal matrix logarithm is required to compute the Lie di-
vergence. However, if both the matrix exponential and
logarithm can be computed efficiently, one can generally
map a local neighborhood of the manifold to a vector
space efficiently, and operate on the vector space in-
stead. This idea has been applied to domains other than
DS(n), e.g. (Begelfor and Werman, 2006; Cetingul and
Vidal, 2009; Park, 1995; Pennec, 2006; Subbarao and
Meer, 2009), where in most cases the Lie divergence is
replaced by a Riemannian distance which happens to
make use of the matrix exponential and logarithm.

The matrix exponential eY of any matrix Y, de-
fined in equation (4), always converges. When Y ∈ g,
eY is an element of G (Hall, 2003, §2). In contrast, since
the map Y → eY is many-to-one, its inverse may not
converge. However, if we restrict the domain to a suffi-
ciently small open neighborhood around 0, the matrix
exponential becomes invertible, in which case its in-
verse, the principal matrix logarithm, denoted by lnX,
is given by (Hall, 2003, §2):

lnX := −
∞∑
k=1

(In −X)k /k. (16)

It is known that this series converges when ‖I−X‖F <
1, but does not necessarily converge when ‖I−X‖F ≥ 1
(Hall, 2003). In addition, closed forms for eY and lnX
do not always exist, and finding closed forms for them in
special cases are open research problems (Cheng et al,
2000; Gallier and Xu, 2002).

We are not aware of any previously reported closed
forms for the two series, applied to DS(n) for the gen-
eral case, nor for any particular n, except for eY in
DS(2) (Eade, 2011) and DS(3) (Eade, 2011; Strasdat
et al, 2010). We derive closed forms for both eY and

4 The Lie divergence in DS(n) is first discussed in (Pham
et al, 2011), where it is called the intrinsic distance.

5 There is also a right-Lie exponential map, ExpX(Z) = eZX.
However, the resulting divergence, dL (X,Y) =

∥∥ln(YX−1)
∥∥

F
,

would be right-invariant, not left-invariant.
6 There is a similar divergence in the literature called the Log-

Euclidean distance, defined by dLE(X,Y) := ‖lnX− lnY‖F in
the space of symmetric positive-definite matrices (Arsigny et al,
2006a). This divergence, if applied to DS(n), becomes inverse-
invariant but not left-invariant.

lnX in DS(2) and DS(3) below, providing for the first
time a bidirectional mapping between DS(n) and its
Lie algebra, denoted by ds(n), for n ∈ {2, 3}. Further-
more, we show in §A.3 that lnX converges if and only
if the rotation angle of Xr is not 180°. Closed forms in
higher dimensional DS(n) are out the article’s scope,
as discussed in §A.3.

The Lie algebra of DS(n), ds(n) := TIn+1DS(n) , is
the set of following matrices:

ds(n) = {M (aIn + W,u)
: a ∈ R,W ∈ so(n),u ∈ Rn}, (17)

where so(n) := TInSO(n) represents the space of skew-
symmetric matrices. Note that aIn+W uniquely iden-
tifies both a and W, since the diagonal elements of W
are zeros.

Substituting Y = M (aIn + W,u) ∈ ds(n) into
equation (4) yields

eY = m

( ∞∑
k=0

(aIn + W)k
k! ,

∞∑
k=0

(aIn + W)k
(k + 1)! u

)
= m

(
eaeW, ξ(aIn + W)u

)
, (18)

where eW is the matrix exponential in SO(n) and

ξ(Z) :=
∞∑
k=0

Zk

(k + 1)! (19)

is a matrix series.
Similarly, substituting X = m (sR, t) ∈ DS(n) into

equation (16) yields

lnX = M

(
−
∞∑
k=1

(In − sR)k
k

,

∞∑
k=0

(In − sR)k
k + 1 t

)
= M ((ln s)In + ln R, η(sR)t) , (20)

where ln R is the principal matrix logarithm in SO(n)
and

η(Z) :=
∞∑
k=0

(In − Z)k
k + 1 (21)

is a matrix series.
To turn these series in DS(n) into closed forms,

we need closed forms for the matrix exponential and
logarithm series in SO(n), and closed forms for equa-
tions (19) and (21). While the former is available when
n ∈ {2, 3} (Gallier and Xu, 2002), the latter has not
been previously reported. We present the final results
when n ∈ {2, 3} in the following four lemmas.

Lemma 2 (Proof in §A.3.1) The matrix exponential
of Y = M (aI2 + W,u) ∈ ds(2) is

eY = m

(
ea
[

cos θ − sin θ
sin θ cos θ

]
,E2u

)
(22)
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where θ = W2,1 = −W1,2 and

E2 =
[
ξr −ξi
ξi ξr

]
, (23)

ξr := a(ea cos θ − 1) + θea sin θ
a2 + θ2 , (24)

ξi := aea sin θ − θ(ea cos θ − 1)
a2 + θ2 . (25)

Lemma 3 (Proof in §A.3.1) The principal matrix
logarithm of X = m (sR, t) ∈ DS(2) is

lnX = M

([
lns −θ
θ lns

]
,L2t

)
(26)

where θ = arctan(R2,1/R1,1), and

L2 =
[
ηr −ηi
ηi ηr

]
, (27)

ηr := ln s (s cos θ − 1) + θ (s sin θ)
(s cos θ − 1)2 + (s sin θ)2 , (28)

ηi := θ (s cos θ − 1)− ln s (s sin θ)
(s cos θ − 1)2 + (s sin θ)2 . (29)

Lemma 4 (Proof in §A.3.2) The matrix exponential
of Y = M (aI3 + W,u) ∈ ds(3) is

eY = m
(
eaeW,E3u

)
(30)

where

eW = I3 + sin θ
θ

W + 1− cos θ
θ2 W2 (31)

is Rodrigues’ formula (Gallier and Xu, 2002) for com-
puting the matrix exponential of W ∈ so(3), θ = ‖W‖F√

2 ,
and

E3 = ea − 1
a

I3 + ξi
θ

W +
(
ea − 1
aθ2 − ξr

θ2

)
W2, (32)

with ξr and ξi defined in lemma 2.

Lemma 5 (Proof in §A.3.2) The matrix principal
logarithm of X = m (sR, t) ∈ DS(3) is

lnX = M ((lns)I3 + W,L3t) (33)

where θ = arccos((trace(R)− 1)/2),

W = lnR = 0.5θ
sin θ

(
R −RT) (34)

computes the logarithm of rotation matrix R, and

L3 = ln s
s− 1I3 + ηi

θ
W +

(
ln s

(s− 1)θ2 −
ηr
θ2

)
W2, (35)

with ηr and ηi defined in lemma 3.

Fig. 3 Scale bias of a Lie mean. The Lie mean of three
direct similarities in DS(3) with the same scale and rotation is
a direct similarity with a larger scale.

4.2 Properties of the Lie Divergence and Means

The Lie divergence is symmetric since lnA = −ln
(
A−1)

for all matrices A for which lnA converges (Hall, 2003,
§2). However, sub-additivity does not always hold. As
an example, pick three 3D direct similarities: A :=
m (I3, ê1), B := m (I3,−ê1), and C := m (1.005I3,0)
in DS(3), where êi represents a unit vector having a
1 at row i and 0 everywhere else. Using lemma 5, the
pairwise Lie divergences among them are dL(A,B) = 2,
dL(A,C) ≈ 0.99752, and dL(C,B) ≈ 0.99752. Hence,
dL(A,B) > dL(A,C) + dL(C,B). The Lie divergence
is therefore a semimetric.

It is left-invariant since for all X,Y,Z ∈ G:

dL(ZX,ZY) =
∥∥ln(X−1Z−1ZY)

∥∥
F

=
∥∥ln(X−1Y)

∥∥
F = dL(X,Y). (36)

The mean induced by the Lie divergence is equivari-
ant to scaling, rotation and translation altogether since
the divergence is left-invariant. However, as shown by
the following theorem, it is not translation-compatible,
i.e. it is biased in scale due to translations, illustrated in
figure 3. To our knowledge, no mean induced by the Lie
divergence in DS(n) has a closed form; it is a solution
to a non-convex optimization problem.

Theorem 1 (Proof in §A.4) Any mean induced by
the Lie divergence is scale-compatible, rotation-compat-
ible, but not translation-compatible.
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4.3 Computing Lie Means and Mean Shift

We use the L-BFGS optimization algorithm7 (Liu and
Nocedal, 1989) to estimate the mean induced by the Lie
divergence, using the closed forms presented in lemmas
3 and 5 to evaluate equation (15). We also use this ap-
proach to compute means within mean shift, in §7.2.2.

Mean shift in matrix Lie groups has been addressed
before in the the literature: Subbarao and Meer (2009)
propose a general mean shift method for any Riem-
manian manifold, which they call intrinsic mean shift.
They claim that intrinsic mean shift can be applied to
any matrix Lie group, such as DS(n), and that in these
cases the underlying Riemannian distance is given by
d (X,Y) =

∥∥ln(X−1Y)
∥∥

F, i.e. the Lie divergence. In-
deed, this approach was evaluated in DS(n) by Pham
et al (2011). However, when applied to DS(n), this
claim is incorrect—while Riemannian distances satisfy
sub-additivity, the Lie divergence in DS(n) does not.
The claim is therefore not entirely true, and results re-
garding intrinsic mean shift in (Pham et al, 2011) are
also invalid.

The source of this confusion is worth investigating.
Subbarao and Meer (2009) give two different formulæ
for an inverse exponential map: the inverse of a Rie-
mannian exponential map (equation (8) of that paper),
which is defined from constant-velocity geodesics with
the same origin (e.g. see (Lee, 1997)), and the inverse
of the Lie exponential map (equation (34) of that pa-
per, here given in (14)), defined from integral curves
with the same origin. When the underlying metric ten-
sor of a Riemannian manifold is bi-invariant, the Rie-
mannian exponential map coincides with the Lie ex-
ponential map (O’Neill, 1983, §11.10); the names Rie-
mannian and Lie can be dropped, the Lie divergence
becomes a Riemannian distance, and means induced
by the Lie divergence can be computed iteratively via
Riemannian gradients. This is the case for several well
known spaces, such as Euclidean spaces and rotation
groups SO(n) (Pennec, 1998). However, bi-invariant
metric tensors exist if and only if the adjoint represen-
tation of the group is compact (Sternberg, 1999, the-
orem V.5.3), a fact that was not addressed in (Sub-
barao and Meer, 2009). The adjoint representation of
DS(n), Ad(DS(n)), contains linear operators that are
not bounded by translations and scalings, i.e. a non-
compact group, therefore there is no bi-invariant metric
tensor in DS(n), implying the two maps do not coin-
cide.

7 We initialize the algorithm at one of the input direct simi-
larities, the highest weighted one if computing a weighted mean.

This raises the question of how Riemannian dis-
tances and means in fact behave in DS(n), which we
address in the next section.

5 Left-Invariant Riemannian Distances

Using Riemannian geometry (e.g. see (Lee, 1997; Stern-
berg, 1999)), one can convert any connected space G
into a connected Riemannian manifold by endowing on
it a metric tensor g; examples include (Begelfor and
Werman, 2006; Dubbelman et al, 2012; Pennec, 2006;
Subbarao and Meer, 2009). It can be shown that the
metric tensor g induces a distance dR restricted to G
called a Riemannian distance, defined as the length of
the shortest g-geodesic (geodesic induced by g) connect-
ing two elements of the manifold. Conversely, given any
Riemannian distance dR on G, one can obtain g at any
element X by taking the derivatives of dR(X, ·). In other
words, g and dR can be used interchangeably.

In this section, we investigate the family of all left-
invariant Riemannian distances in DS(n), leaving the
study of the more general family of all Riemannian dis-
tances in DS(n) for future work. When the space G is
a Lie group, if g is left-invariant then so is dR, and vice
versa (Arnold et al, 1989, §A.2).

Additionally, letting fX(Y) := dR(X,Y)2, the fol-
lowing result holds whenever fX is differentiable (i.e.
not at the cut locus):

gradfX(Y) = −2exp−1
X (Y), (37)

where expX(·) is the Riemannian exponential function
at X (e.g. see (Lee, 1997, §4-6)).

The partial derivatives of the map φ, defined in (3),
w.r.t. the local coordinates x at X = φ(x), denoted
by ∂k;X := ∂φ(x)

∂xk for k = 1..nds, provide a basis for
the tangent space at X, denoted by TXDS(n). These
partial derivatives are given8 by:

∂k;X =


M
(

exsex×
r ,0

)
k ∈ Js,

M
(

exsex×
r (Ψ̃xr êk−1)×,0

)
k ∈ Jr,

M (0, êk−nr−1) k ∈ Jt,

(38)

where the matrix function Ψ̃xr is defined in (72).
Let ϕx : ds(n) → Rnds be the coordinate map for

TXDS(n) under the basis (∂k;X)ndsk=1. Any left-invariant
metric tensor g can be expressed uniquely as:

gX(U,V) = gIn+1(dLX−1(U), dLX−1(V))
= ϕ0(X−1U)TG̃ϕ0(X−1V), (39)

8 These formulæ are derived from the partial derivatives of
the matrix exponential in SO(n), given in §A.1.
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where dL is the differential of the left-translation oper-
ator, i.e. dLX(U) := XU for any matrices X and U,
and G̃ ∈ GL(nds) is a constant, symmetric and positive-
definite matrix that identifies the metric tensor g.

Means induced by left-invariant Riemannian distances
are equivariant to scaling, rotation and translation al-
together. Different values of G̃ correspond to different
left-invariant distances. In the next subsection, we de-
termine if the means are biased or not.

5.1 Means induced by Left-Invariant Riemannian
Distances

Recall that D(n) is the direct dilation group, R(n) is
the rotation group, and T (n) is the translation group.
The following theorem connects scale-compatibility, ro-
tation-compatibility, and translation-compatibility to a
concept called totally geodesic in DS(n), meaning any
geodesic starting from a given element of a submanifold
of DS(n) with a given tangent vector resides entirely in
the submanifold9 (e.g. see (Lee, 1997, §8)).

Theorem 2 (Proof in §A.5) Let DS(n) be equipped
with a left-invariant metric tensor g.

1. Every unique g-mean (mean induced by g) is scale-
compatible if and only if D(n) is totally geodesic in
DS(n).

2. Every unique g-mean is rotation-compatible if and
only if R(n) is totally geodesic in DS(n).

3. Every unique g-mean is translation-compatible if and
only if T (n) is totally geodesic in DS(n).

Therefore, to find out if means induced by a given
distance are scale-compatible, translation-compatible,
and/or rotation-compatible, we can equivalently find
out whether D(n), R(n), T (n) respectively are totally
geodesic in DS(n) or not. The next theorem is a key
finding of this section.

Theorem 3 (Proof in §A.6) For every left-invariant
metric tensor g on DS(n), T (n) is not totally geodesic
in DS(n).

Thus, combining the two theorems, we can firmly state
that every mean induced by a left-invariant metric ten-
sor is not translation-compatible. In contrast, the scale-
compatibility or the rotation-compatibility of the mean
depend on the choice of the metric tensor. This point
is demonstrated in the next subsection.

9 As an example, a great circle is totally geodesic in a sphere.

5.2 Natural Riemannian Distance

In this subsection, we analyze a left-invariant metric
tensor that corresponds to the case that G̃ = Inds in
(39). Let us refer to it as ǧ, satisfying

ǧX(U,V) :=
∥∥(X−1U)T(X−1V)

∥∥2
F (40)

for any X ∈ DS(n) and any U,V ∈ TXDS(n). We refer
to the Riemannian distance induced by ǧ as the natural
Riemannian distance.

Using the basis for TXDS(n) defined in (38), the
metric tensor ǧ leads to the following line element10:

ds2 = dx2
s +

∥∥Ψ̃xrdxr
∥∥2 + e−2xs ‖dxt‖2 . (41)

This equation enables us to write (DS(n), ǧ) conve-
niently as the product space of two Riemannian mani-
folds (disregarding the group structure of DS(n)):

(DS(n), ǧ) = (R(n), ǧr)× (DT (n), ǧst), (42)

where DT (n) := D(n)oT (n) is the set of direct dilata-
tions (Coxeter, 1961, §5), i.e. transformations consist-
ing of a direct dilation and a translation, and ǧr and
ǧst are respectively the restricted versions of ǧ on R(n)
and DT (n). Their corresponding line elements are:

ds2
r =

∥∥Ψ̃xrdxr
∥∥2
, (43)

ds2
st = dx2

s + e−2xs ‖dxt‖2 . (44)
This decomposition has several corollaries. First, it

divides the problem of finding the mean of direct simi-
larities into two problems: finding the mean of rotations
induced by ǧr, and finding the mean of direct dilata-
tions induced by ǧst. This simplifies the original prob-
lem substantially. The squared Riemannian distance
dR(x,y)2 becomes the sum of two squared distances:

dR(x,y)2 = dr(x,y)2 + dst(x,y)2, (45)

where dr and dst are induced ǧr and ǧst respectively.
Second, we can see that the restricted metric tensor

ǧr is left-invariant and the corresponding matrix G̃ in
equation (39) is G̃ = Inr . Thus, it coincides with the
natural Riemannian metric tensor for rotation matrices
in the literature (Park and Ravani, 1997), the geodesics
and distances of which are well understood. Hence, the
Riemannian rotation distance between two direct simi-
larities parameterized by x and y is given by:

dr(x,y) =
∥∥∥ln(e−x×

r ey×
r )
∥∥∥

F
, (46)

the gradient of which, according to equation (37), is
given by:

grad(fr;x)(y) = 2φ(x)M
(

ln(e−x×
r ey×

r ),0
)
, (47)

10 i.e. A line element is an infinitesimal arc-length.
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enabling one to compute the rotation mean via Karcher’s
gradient-descent procedure (Karcher, 1977), as shown
in (Pennec, 1998).

Third, by reparameterizing (xs,xt) → (exs ,xt), we
see that the Riemannian manifold (DT (n), gst) is iso-
metric to Poincaré’s upper half-space model R+ × Rn
with line element ‖dx‖2 /x2

1. Poincaré’s model (origi-
nally due to Beltrami (1868)) is a classic example of
a hyperbolic space, whose geodesics are half circles or-
thogonal to the hyperplane x1 = 0. Thus, the Poincar-
édistance between two direct dilatations parameterized
by (xs,xt) and (ys,yt) is given as (Beltrami, 1868; Vac-
caro, 2012):

dst(x,y) = cosh−1

(
1 + (exs − eys)2 + ‖xt − yt‖2

2exseys

)
,

(48)

where cosh(·) is the hyperbolic cosine function. In order
to find the mean of direct dilatations induced by ǧst,
we can again use Karcher’s gradient-descent procedure
(Karcher, 1977). The missing element is a formula for
the gradient of the squared Poincaré distance function.
However, substituting equation (38) into equation (37),
we obtain:

grad(fst;x)(y) = 2e−xsβ(z)×
M (((eys − exs)− exsz/2) In,yt − xt) , (49)

where

z := (exs − eys)2 + ‖xt − yt‖2

exseys
, (50)

β(z) := 2 cosh−1(1 + z/2)√
z(z + 4)

. (51)

Fourth, due to the decomposition, the injectivity ra-
dius of any direct similarity in (DS(n), ǧ) is the mini-
mum of the injectivity radius of any point in (R(n), ǧr)
and any point in (DT (n), ǧst). The former is known to
be 1

4 (Moakher, 2002), at which the rotation angle be-
tween two rotations is 180°. The latter turns out to be
∞ since it is isometric to Poincaré’s model, which has
∞ injectivity radius (Karcher, 1977; Vaccaro, 2012).
Therefore, as long as the rotation angle between two
direct similarities in DS(n) is less than 180°, the unit-
speed geodesic between them under ǧ is unique.

Finally, the decomposition leads to the fact that
both DT (n) and R(n) are totally geodesic in DS(n)
under ǧ, because the line elements of equations (43)
and (44) are parameterized separately. Also note that
D(n) is totally geodesic in DS(n) under ǧst, the re-
stricted version of ǧ on DT (n). Therefore, according
to theorem 2, any ǧ-mean is both scale-compatible and
rotation-compatible.

In summary, via the decomposition of the Rieman-
nian manifold (DS(n), ǧ), we have shown how to com-
pute the mean of direct similarities in DS(n) induced
by ǧ, and that it is guaranteed to be scale-compatible
and rotation-compatible, but not translation-compati-
ble, due to theorem 3.

6 SRT Divergences

We have seen that the Euclidean distance and its means
are simple, and efficient to compute. However, the dis-
tance is not left-invariant and the means are biased in
scale due to rotations. We have seen that the Lie di-
vergence and all left-invariant distances induce means
which are biased in scale due to translations, and also
must be computed via an iterative process. In this sec-
tion, we construct a new family of left-invariant diver-
gences in DS(n), which are simpler and more efficient
than the Lie divergence and Riemannian distances in
computing divergences and means. We call them the
SRT divergences.

6.1 Divergence Construction

Inspired by the natural Riemannian distance in §5.2, in
which the rotation component can be separated from
other components, we define an SRT divergence to be
an `2-norm of component-wise divergences, thus:

dα(X,Y) :=

√
ds(X,Y)2

σ2
s

+ dr(X,Y)2

σ2
r

+ dt;α(X,Y)2

σ2
t

.

(52)

where ds, dr and dt;α measure scale, rotation and trans-
lation divergences respectively, σs, σr, σt > 0 are band-
width coefficients, and α ∈ R is a divergence parameter.
Varying σs, σr, σt alters the relative sensitivity of the
SRT divergence to different types of transformations,
making SRT divergences more flexible than existing di-
vergences.

The component-wise divergences are defined as fol-
lows:

ds(X,Y) := |ln(Xs/Ys)| , (53)
dr(X,Y) := ‖Xr −Yr‖F , (54)

dt;α(X,Y) := ‖Xt −Yt‖√
X1+α
s Y1−α

s

. (55)

It is clear that dα in equation (52) can be evalu-
ated in closed-form. SRT divergences do not satisfy sub-
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additivity11. The conjugate of a divergence dα, denoted
by dᾱ, is given by the following:

dᾱ(X,Y) := dα(Y,X) = d−α(X,Y). (56)

Therefore, every (dα, d−α) is a pair of divergences pre-
serving conjugate symmetry, and d0 is symmetric.

The first two distances, given by equations(53) and
(54), are bi-invariant distances on D(n) and R(n) re-
spectively. The quotient

√
X1+α
s Y1−α

s is introduced in
equation (55) to make the translation distance ‖Xt −Yt‖
invariant to scaling. As a result, SRT divergences are
proved to be left-invariant by the following theorem.

Theorem 4 (Proof in §A.7) For every α ∈ R and
σs, σr, σt ∈ R+, dα is left-invariant.

6.1.1 Discussion of Rotation Distances

Even though in equation (54) the Euclidean distance
of rotation matrices (Downs, 1972), also known as the
extrinsic rotation distance (Moakher, 2002) (extR), is
used as the distance of rotations to simplify the theoret-
ical explanation, it is possible to use any left-invariant
rotation distance at all. For rotation distances in 3D,
we implemented the intrinsic rotation distance (Park
and Ravani, 1997) (intR) given in (46) and a more ef-
ficient extrinsic quaternion distance (quat) of Ravani
and Roth (1983), given by:

dQ(Xr,Yr) =
√

1− |q(Xr)Tq(Yr)|, (57)

where q(Xr) is the quaternion representation of the ro-
tation component Xr, and | · | is needed to account for
the fact that q(Xr) and −q(Xr) represent the same ro-
tation. Readers interested in existing rotation distances
and means are referred to (Hartley et al, 2013).

6.2 Mean Computation

Intrinsic means, such as those induced by the Lie diver-
gence or left-invariant distances, are slow to compute,
requiring an iterative optimization. In contrast, means
induced by SRT divergences, SRT means, are efficient
to compute, as shown by the following lemma.

11 For example, consider σs = σr = σt = 1, A :=
m
(
e−10I3, ê1

)
, B := m

(
e10I3, ê1

)
, and C := m (I3,0)

in DS(3). For any α ≥ 0: dα(A,B) = 20, dα(B,C) =√
102 + e−10(1+α) and dα(A,C) =

√
102 + e10(1+α), proving

that dα(A,C) > dα(A,B) + dα(B,C).

Lemma 6 (Proof in §A.8) Let X be the SRT mean
of a set of direct similarities {Xi}Ni=1 with positive weights
{wi > 0}Ni=1. The components of X are given by:

lnXs = argmin
z∈R

wi(z − lnXi;s)2 + Vte(α−1)z, (58)

Xr = sop(wiXi;r), (59)
Xt = t̄, (60)

where t̄ = viXi;t/vj is a weighted mean of translations
with weights vi = wi

X1+α
i;s

, Vt = σ2
s

σ2
t
vi
∥∥t̄−Xi;t

∥∥2 is a
multiple of their weighted variance, and the function to
minimize in equation (58) is convex. In addition, when
α = 1,

Xs = ewilnXi;s/wj . (61)

If quaternions are used to represent 3D rotations in-
stead, the extrinsic mean of rotations in quaternion
space (Ravani and Roth, 1983) is efficiently approxi-
mated as the length-normalized version of

q̄ = sign(q(Xi)Tq̂)wiq(Xi), (62)

where q̂ is an estimate12 of the mean.
We note that any SRT mean is equivariant since its

underlying divergence is left-invariant. It follows imme-
diately from equations (59) and (60) that every SRT
mean is unbiased in rotation and translation, since Xr

is an extrinsic mean of rotations Xi;r and Xt is an
arithmetic mean of translations Xi;t. It is scale-com-
patible because equations (59) and (60) involve only
rotations Xi;r and translations Xi;t respectively. It is
rotation-compatible because when all translations Xi;t
are the same, Vt = 0, and equations (58) and (60) be-
come a scale mean and a translation mean respectively.
SRT means are in general not translation-compatible.
However, when α = 1, the second term of (58) van-
ishes and Xs becomes a geometric mean of scales Xi;s,
making SRT means unbiased in scale and translation-
compatible. When α = 0, the biasedness of the scale
component is illustrated in figure 4.

7 Evaluation

Table 1 summarizes the properties of SRT divergences
and means, along with those of existing divergences,
12 We set q̂ to one of the input quaternions (that with the
highest weight, if computing a weighted mean), or in the case of
mean shift, the mean from the previous iteration of mean shift.
The evaluation of equation (62) could be repeated, replacing
q̂ with q̄ each iteration, until convergence, which is rapid as q̂
affects only the sign applied to each input quaternion, but in
practice we used just one iteration.
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stated or derived in the previous sections. Through ex-
periments, we aim to demonstrate two further points.
Firstly, using synthetic direct similarities, we will em-
pirically evaluate the divergences and means introduced
earlier, in terms of bias and also computational effi-
ciency, demonstrating the desirable properties of our
new SRT divergences. Secondly, using publicly avail-
able data for a 3D object recognition and registration
problem, we will show that SRT divergences can lead
to improved performance in a real-world application.

7.1 Synthetic evaluation

Table 2 visualizes pseudo-geodesics induced by different
divergences and transformations. A pseudo-geodesic be-
tween two direct similarities X and Y is defined as a
sequence of means of the set {(X, a), (Y, 1− a)} where
a runs from 0 to 1. In the figures intermediate frames
illustrate weighted means of the two given direct sim-
ilarities. They form the geodesic between the two di-
rect similarities if the underlying divergence is a metric
(hence the name pseudo-geodesic). The table clearly
shows how existing means are biased in scale.
Figure 4 plots scale-bias as a function of translation
variance, excluding the unbiased SRT divergence. It
shows that, the scale-biasedness increases as the trans-
lation variance increases. However, the scale-biasedness
is negligible for all divergences when the translation
variance is less than 10−3.

Table 3 reports the average computational speed for
each divergence in DS(n). The two SRT divergences
present the fastest computational time, evaluating one
million divergences in just 86 milliseconds, while the Lie
divergence requires 6.4 seconds on the same task.

Figure 5 summarizes the average speed of comput-
ing means induced by each divergence. The take-home
message here is that the evaluation time varies by orders
of magnitude between extrinsic and intrinsic means. For
example, the mean of 100 direct similarities induced by
the SRT divergences and the Euclidean distance can be
computed in 10-20 microseconds, while that induced by
the Lie divergence or the natural Riemannian distance
takes tenths of a second to compute.

7.2 3D object recognition and registration

We evaluate the divergences in the context of a real-
world application—3D object recognition and registra-
tion—using a publicly-available dataset: the Toshiba
CAD model point clouds dataset (Pham et al, 2012),
which consists of direct similarity votes for shapes within
3D point clouds.
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Fig. 4 Scale-biasedness due to translations of the SRT
divergence with α = 0. All input scales are set to 1. Based
on (58), the scale component of the mean depends only on Vt, a
weighted variance of translations. Different SRT curves (blue)
correspond to different values of coeefficient σ

2
s

σ2
t

of Vt, which are
from left to right 0.5, 1, and 2 respectively. When Vt is large, the
logarithm of the output scale becomes linear with the logarithm
of Vt.

Table 3 Time for computing one million divergences.

Divergence type Time to compute
106 divergences

Euclidean 0.246s
Lie 6.369s

intR + Poincaré 0.608s
intR + asymST 0.504s
intR + symST 0.462s
quat + Poincaré 0.231s
quat + asymST 0.086s
quat + symST 0.086s

These votes, computed from real data (Pham et al,
2011), can be used to infer the position of known shapes
within the data, and compared with the ground truth,
which is also provided. We use the intrinsic Hough trans-
form (Woodford et al, 2013) as the inference framework;
this method finds modes in a kernel density estimate of
the posterior distribution of object poses and identities,
and has been shown to perform well on this dataset.
Within this framework we use each of the divergences
discussed here in a Gaussian kernel on each vote, and
quantitatively compare the recognition and registration
scores of the resulting methods.

7.2.1 Test framework

The dataset (Pham et al, 2012) consists of 1000 test sets
of votes, each computed from a point cloud containing
a single, rigid object, one of ten test objects. Each vote
consists of a direct similarity representing a putative 7D
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Table 1 Properties of divergences and associated means in DS(n).

Properties Euclidean Lie natural symmetric SRT unbiased SRT
Riemannian α = 0 α = 1

Divergence:
Closed-form ! ! ! ! !

Left-invariant % ! ! ! !

Symmetric ! ! ! ! %

Sub-additive ! % ! % %

Mean:
Closed-form ! % % % !

Equivariant ! ! ! ! !

Scale-compatible ! ! ! ! !

Rotation-compatible % ! ! ! !

Translation-compatible ! % % % !

Table 2 (Pseudo-)geodesics of direct similarities. Each intermediate direct similarity is a weighted mean of the two end
direct similarities. The (pseudo-)geodesics induced by all except the symmetric SRT divergence are independent of the bandwidth
σ.
divergence translation translation+rotation translation+scaling

Euclidean

Lie

natural Riemannian

SRT with α = 0

SRT with α = 1

pose (scale, rotation and translation) of the object, a
corresponding object identity number proposing which
object is present, and a weight indicating the relative
strength of the vote. Finally, the ground truth pose and
object identity for each test set are also given.

The intrinsic Hough transform inference framework
(Woodford et al, 2013) returns a list of putative objects’

identity and pose, along with their relative likelihoods.
Recognition and registration scores are then computed
as per (Pham et al, 2011); to recap, the recogntion
score is computed by comparing the identity of the
most likely object with the ground truth identity, for
all 1000 tests; the registration score is similarly com-
puted, by checking that each of the following measures
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Fig. 5 Average mean computation times. The Euclidean dis-
tance and SRT divergences with quaternions yield fastest times
since they have closed-form formulæ for the means. In (b), only
divergences with closed-form means are considered.

of pose accuracy, on scale, rotation and translation re-
spectively, is less than 1:

τs(X,Y) = 20 |lnXs − lnYs| (63)

τr(X,Y) = 12
π

arccos
(

trace(XT
r Yr)− 1
2

)
, (64)

τt(X,Y) = 10‖Xt −Yt‖√
XsYs

, (65)

where X and Y are the pose of the most likely object
of the ground truth identity and the ground truth pose
respectively. In the case of an object having symmetries,
there are multiple Ys, and divergence to the closest is
used.

7.2.2 Learning bandwidth parameters

Each divergence tested has a set of bandwidth param-
eters. Therefore, to compare these divergences fairly,
we need to use suitable bandwidth parameters. To do
this we learn a good set of bandwidth parameters for
each divergence, using 40 training sets of votes (sepa-
rate from the test sets) which are also provided (Pham

et al, 2012), and find parameters which maximize the
registration score on this training data. However, since
the registration score is a discrete measure13, we use the
following real-valued, robust registration measure to al-
low standard gradient-based optimizers to be used:

E =
∑
i

ρ

∥∥∥∥∥∥
 τs(Xi,Y i)
τr(Xi,Y i)
τt(Xi,Y i)

∥∥∥∥∥∥
∞


ρ(x) =

{
x2 if |x| ≤ 1
1 + 2 ln x otherwise

, (66)

where Xi and Y i are an estimate of the most likely pose
for the ground truth object class and the ground truth
pose for the ith training set respectively. The particular
robust kernel ρ(·) chosen, which we call the log tail ker-
nel, is continuously differentiable and has a quadratic
region for the training sets which meet registration cri-
teria of equations (63)–(65), encouraging these to be
modelled well, and a strictly increasing, strongly sub-
linear region for the other training sets, encouraging
the resulting bandwidths to better model those training
sets which are closer to meeting the registration criteria
than those further away. The ensures broad convergence
of the bandwidth training algorithm described next.

For a given set of bandwidth parameters, Xi can
be computed using the test inference framework. E is
then computed and locally minimized w.r.t. the band-
width parameters, first using a coarse local search grid
which moves towards the lowest value, then refined us-
ing Levenberg-Marquadt minimization. However, run-
ning the full inference framework at each iteration makes
this process very slow. Instead, we make use of the fact
that we know the ground truth pose of the training
data, and approximate Xi by initializing it at Y i and
use one step of mean shift (Cheng, 1995) to move it
to a more likely location under the probability density
given by equation (58). In fact, since a single step of
mean shift has been shown to be a step in the direction
of steepest gradient, with a magnitude proportional to
that of the steepest gradient (Cheng, 1995), minimizing
E in this way is equivalent to minimizing the magnitude
of the steepest gradient of the probability density func-
tion at the ground truth solution, i.e. encouraging the
ground truth solution to be a local mode. This novel pa-
rameter learning strategy is reminiscent of contrastive
divergence (Hinton, 2002).

The initial bandwidth parameters for all methods
are set to 0.1; the final computed bandwidths are given
in Table 4.
13 Given 40 training sets, only 41 different registration scores
are achievable.
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Table 4 Learned values of kernel bandwidth.
Divergence type Bandwidth

σs σr σ/σt/σst
Euclidean (σ) – – 0.226

Lie (σ) – – 0.273
extR + Poincaré (σr, σst) – 0.100 0.058
quat + Poincaré (σr, σst) – 0.146 0.173
intR + Poincaré (σr, σst) – 0.619 0.173

extR + asymST (σs, σr, σt) 0.100 0.360 0.100
quat + asymST (σs, σr, σt) 0.103 0.100 0.104
intR + asymST (σs, σr, σt) 0.101 0.360 0.100
extR + symST (σs, σr, σt) 0.101 0.358 0.118
quat + symST (σs, σr, σt) 0.100 0.144 0.144
intR + symST (σs, σr, σt) 0.103 0.613 0.144

Table 5 3D object recognition and registration results.

Divergence type Scores (%) Av. comp. time (µs/vote)
Recog. Regis. Divergence Mean

Euclidean 44.8 62.0 1.92 4.66
Lie 53.3 67.0 18.4 6530

extR + Poincaré 41.4 55.1 2.11 75.7
quat + Poincaré 37.1 57.2 1.28 87.7
intR + Poincaré 36.9 51.3 4.57 159
extR + asymST 67.7 75.6 2.65 7.13
quat + asymST 69.0 75.8 1.50 9.28
intR + asymST 67.7 75.1 5.15 116
extR + symST 67.3 75.4 2.52 45.8
quat + symST 72.4 75.2 1.48 50.4
intR + symST 73.4 74.6 4.67 137

7.2.3 Results

The recognition and registration rates for each diver-
gence on the 3D object recognition and registration task
are summarized in Table 5. The results show that all
six SRT divergences introduced in this paper perform
significantly better at both the recognition and regis-
tration tasks, demonstrating the efficacy of the SRT di-
vergence framework in a real application. Furthermore,
the SRT divergence computation times are compara-
ble with the fastest methods, while the mean computa-
tion times of the extR + asymST and quat + asymST
SRT divergences are also comparable with the fastest
methods, demonstrating that this improvement in per-
formance need not come with a speed penalty.

8 Conclusions

In this article we have reviewed three families of di-
vergences on direct similarities, ranging from extrin-
sic to intrinsic, and introduced a new family, SRT di-
vergences. We have further proven a number of desir-
able properties of these divergences and their induced
means, and have discovered closed forms for some of
them.

The Euclidean distance and Euclidean means are
simple, and fast to compute, but the distance is not
left-invariant and the means are biased in scale due to
rotations. The Lie divergence is left-invariant, but not
a metric. We have developed closed forms for the Lie
divergence in 2D and 3D; however, Lie means are esti-
mated iteratively, making them very slow to compute.
Any mean induced by any left-invariant distance is like-
wise slow to compute. In addition, means induced by
the Lie divergence and all left-invariant distances are
biased in scale due to translations.

The proposed SRT divergences, though not metric,
are fast to compute, as are the means induced by them.
In contrast to all the existing divergences evaluated,
the asymmetric SRT divergence produces means which
are completely unbiased. The fact that the asymmetric
SRT divergence is not symmetric does not create any
difficulty; one just has to take care as to the direction
of the divergence.

Evaluating all these divergences on a challenging
real-world application, 3D object recognition and regis-
tration, we demonstrate that SRT divergences provide
a significant boost in performance, some of which do so
with insignificant computation time penalty over exist-
ing methods.

A Proofs

A.1 Rotation Group SO(n)

The rotation group SO(n) is the group of n-dimensional rota-
tion matrices:

SO(n) =
{

R ∈ GL(n) : RTR = In ∧ det(R) = 1
}
. (67)

A number of known facts related to SO(n) are required in the
proofs. They are summarized here.

Because rotation preserves the Euclidean norm, the eigen-
values of a rotation matrix R are unit complex numbers eiθk ,
for θk ∈ R and k = 1, . . . , n. Since R is a real matrix, both
eiθk and e−iθk are eigenvalues of R. The Lie algebra of SO(n),
denoted by so(n), contains skew-symmetric matrices

so(n) =
{

W ∈ GL(n) : WT = −W
}
. (68)

The complex eigenvalues of W are 0 and complex conjugate
pairs ±iθk (i.e. logarithms of the eigenvalues of R). The matrix
exponential series in (4) and its inverse in (16) send points back
and forth between SO(n) and so(n). However, (16) converges
only when |θk| < π for all k.

The space of skew-symmetric matrices is isomorphic to the
space of bivectors in geometric algebra, which is a vector space.
If we define a basis for the space, any skew-symmetric matrix
can be represented compactly as a vector. Denote by êi a single-
entry unit vector having a 1 at row i and 0 elsewhere, with
size matching the context. Let single-entry matrices Êi,j be
defined as Êi,j := êiê

T
j . Consider nr := n(n−1)

2 n-by-nmatrices
(Bk)nrk=1:

Bk := (−1)i+j(Êi,j − Êj,i), (69)
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where variables k and i, j are related by k = nr+2−j−(n−1−
i/2)(i− 1) with 1 ≤ i < j ≤ n. Then, any skew-symmetric ma-
trix W ∈ so(n) is uniquely represented as W = xkBk for some
x ∈ Rnr . Hereinafter, W× := x denotes the vector represen-
tation of skew-symmetric matrix W via this map. Conversely,
given a vector x ∈ Rnr , x× denotes the skew-symmetric ma-
trix xkBk. In fact, when n = 3, x× corresponds to the ma-
trix representation of the cross product, i.e. for any x,y ∈ R3,
x×y = x× y.

Consider the exponential map x → ex×
that maps points

in Rnr to SO(n). Since ∂x×

∂xk = Bk, the partial derivatives of
the function ex×

are given by:

∂ex×

∂xk
= ex×

Ψx(Bk), (70)

where Ψx : so(n)→ so(n) satisfies (Hall, 2003, theorem 3.5):

Ψx(V) :=
∞∑
k=0

adk−x× (V)
(k + 1)! , (71)

where ad : so(n) × so(n) → so(n) is a Lie algebra automor-
phism given by adU(V) = [U,V] := UV − VU and [·, ·] is
called the commutator. We further denote by Ψ̃x the matrix
that represents Ψx(·) in local coordinates, i.e. for all v ∈ Rnr ,

Ψ̃xv = Ψx(v×)×. (72)

Deriving an efficient form Ψx (and Ψ̃x equivalently) in the
general case SO(n) is not straightforward, which is to be ad-
dressed elsewhere. However, in case of SO(2) and SO(3), we
can derive it by analyzing the commutator in what follows.

A.1.1 Rotation Group SO(2)

The 2D rotation group is one-dimensional. Every W ∈ so(2)
is written uniquely as θB1 for some θ ∈ R. Thus, every rota-
tion R ∈ SO(2) equals eθB1 , and the commutator [·, ·] always
vanishes. As a result, Ψx(V) = V, leading to Ψ̃x = Inr .

A.1.2 Rotation Group SO(3)

The 3D rotation group is apparently more complicated. It has
three dimensions. The eigenvalues of a rotation matrix R ∈
SO(3) are {1, eiθ, e−iθ}, where traceR = 2 cos θ + 1. Like in
SO(2), lnR converges when |θ| < π, in which case ln R is re-
duced to 0.5θ

sin θ

(
R −RT

)
. If instead W ∈ so(3) is given, the

eigenvalues of W are {0, iθ,−iθ} where θ = ‖W‖F /
√

2, and
eW is derived by Rodrigues’ formula in (31).

According to the above-mentioned basis in so(n), the three
basis tangent vectors in so(3) are B1 = Ê3,2 − Ê2,3, B2 =
Ê1,3−Ê3,1 and B3 = Ê2,1−Ê1,2. They satisfy: [B1,B2] = B3,
[B2,B3] = B1 and [B3,B1] = B2. Based on these equations,
we derive a closed form for computing the commutator in local
coordinates:

[x×,y×]× = x×y = x× y. (73)

Since ad−x× (V) = [−x×,V] = [V,x×] for all skew-sym-
metric matrices V, and (x×)3 = −‖x‖2 x×, applying (73) to
(71), we obtain for all v ∈ R3:

Ψx(v×)× = v− x×v1− cos θ
θ2 + (x×)2vθ − sin θ

θ3 . (74)

Since by definition, Ψ̃xv = Ψx(v×)×, this leads to:

Ψ̃x = I3 − x× 1− cos θ
θ2 + (x×)2 θ − sin θ

θ3 . (75)

We note that Ψ̃T
x = Ψ̃−x and:

Ψ̃T
x Ψ̃x = I3 + (x×)2 θ

2 + 2 cos θ − 2
θ4 . (76)

A.2 Proofs for Lemma 1

The objective function to minimize in (6) is rewritten as:

E(X) = widE(Xi,X)2

= wi
∥∥Xi;sXi;r −XsXr

∥∥2
F

+ wj
∥∥Xj;t −Xt

∥∥2
. (77)

Minimizing the second term with respect to Xt gives (12).
Hence, the problem becomes finding Xs and Xr that min-
imize the first term. To do this, we define vi := wiX2

s and
V i := Xi;sXi;r/Xs for all i = 1, . . . , N , and rewrite the first
term as:

E′(X) := vi
∥∥V i −Xr

∥∥2
F
. (78)

The idea is to find Xr that minimizes E′(X) given Xs first,
and then to use the resultant formula to find Xs. Since Xr is
a rotation matrix, minimizing E′(X) with respect to Xr has
been solved in (Downs, 1972; Sibson, 1979). It is analogous
to the classical orthogonal Procrustes problem which seeks the
orthogonal matrix that most closely transforms a given matrix
to a second one. The minimizer for vi

∥∥V i −Xr

∥∥2
F
is given by:

argmin
Xr∈SO(n)

vi
∥∥V i −Xr

∥∥2
F

= sop(vjV j). (79)

Function sop(·) is invariant to direct dilation, i.e. sop(X) =
sop(aX) for any a > 0 (Downs, 1972; Sibson, 1979). This gives
us a formula for finding Xr independently from Xs:

Xr = sop(viV i) = sop(wiX2
sXi;sXi;r/Xs)

= sop(wiXi;sXi;r), (80)

which is (11).
Given that we have found Xr without knowing Xs, we sub-

stitute Xr back to (78), further reducing the problem to min-
imizing E′(X) with respect to Xs, which is a quadratic mini-
mization problem, to which the unique solution is given in (10).

A.3 Matrix Exponential and Logarithm in DS(n)

For a short hand notation, we write ξ(aIn + W) as En. Ad-
ditionally, the quotient operator is overloaded to denote that
A
B := B−1A = AB−1 if square matrices A and B commute
and B is invertible. To derive a closed form for eY, we derive a
closed form for En and use basic facts about SO(n) are sum-
marized in §A.1. One way to find a closed form for En is to
notice that Zξ(Z) = ξ(Z)Z = eZ − In, and obtain

En = eaeW − In
aIn + W (81)

if aIn + W is invertible. Since the eigenvalues of W are 0 and
complex conjugate pairs ±iθk (see §A.1), it occurs when a 6= 0.
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Conversely, since (In − Z)η(Z) = η(Z)(In − Z) = − ln Z,

η(sR) = (ln s)In + ln R
sR − In

(82)

if sR − In is invertible. Similarly, since the eigenvalues of R
are 1 and e±iθk (see §A.1), the eigenvalues of sR−In are s−1
and se±iθk − 1. Hence, sR − In is invertible unless s = 1. We
write η(sR) as Ln hereinafter.

In theory, we can use equations (81) and (82) in computing
matrix exponential and logarithm. However, this approach in-
volves a matrix inversion operation which is costly to compute
and it only works when the numerator matrix is invertible. More
importantly, the forms become numerically unstable when one
of the eigenvalues of sR − In is close to zero.

In what follows, we further simplify (81) and (82) to forms
which do not involve matrix inversion when n = 2, 3, leading
to closed forms for eY and lnX in DS(2) and DS(3). It is pos-
sible to generalize the work of Gallier and Xu (2002) to find
an efficient method for computing eY and lnX in DS(n) with
n ≥ 4, but the work is much more difficult, requiring solving
an inverse problem for each computation, thereby is out of this
paper’s scope.

Consider a real diagonalizable d-by-d matrix Z for some
integer d. There is an efficient approach to compute Zk. Using
eigen-value decomposition, we diagonalize Z = Qdiag(w1, . . . ,wd)QH,
where (wi)di=1 are complex eigenvalues, QH is the conjugate
transpose of Q, and Q is a unitary matrix, with each column
Q:,i being an eigenvector corresponding to the eigenvalue wi.
Then Zk = Qdiag(wk1 , . . . ,wkd)QH.

The approach can be generalized to computing a matrix
series. Let f(z) =

∑∞
k=0 akzk be a series over a complex num-

ber z. Let F(Z) =
∑∞

k=0 akZk be its matrix version. If Z is
diagonalizable then F(Z) = Qdiag(f(w1), . . . , f(wd))QH.

We notice that the complex version of ξ(·) in (19) leads to
a closed form,

ξ(z) =
∞∑
k=0

zk

(k + 1)! = ez − 1
z

, (83)

which leads to obtaining En = ξ(aIn + W) via diagonalizing
aIn+W. Similarly, the complex version of η(·) in (21) leads to
another closed form,

η(z) =
∞∑
k=0

(1− z)k

k + 1 = ln z
z − 1 , (84)

also suggesting us to obtain Ln = η(sR) (if it converges) via
diagonalizing sR.

We derive closed forms for eY and lnX in DS(2) using
this approach. The same idea is used with some extra work to
derive closed forms for eY and lnX in DS(3). The convergence
condition for lnX turns out to be the same as that for lnR (with
R ∈ SO(n) and n = 2, 3): the rotation angle does not exceed
180°.

A.3.1 Matrix Exponential and Logarithm in DS(2)

Let Y = M (aI2 + W,u) ∈ ds(2) be the matrix whose ma-
trix exponential is to be computed. Since W is a 2-by-2 skew-

symmetric matrix, W =
[

0 −θ
θ 0

]
for some θ ∈ R. We rewrite

W as

W = Qdiag(iθ,−iθ)QH, (85)

where Q = (v, v̄), v = 1√
2 (1,−i)T, and v̄ = 1√

2 (1, i)T is the
complex conjugate of v, leading to aI2 +W = Qdiag(a+iθ, a−
iθ)QH. Thus, substituting this equation to (19) and using (83)
and to simplify the series, we get:

E2 = Qdiag(ξ(a+ iθ), ξ(a− iθ))QH

= ξ(a+ iθ)vvH + ξ(a− iθ)v̄v̄H. (86)

Directly calculating the real part and the imaginary part of
ξ(a + iθ) = ea+iθ−1

a+iθ gives ξ(a + iθ) =: ξr + iξi, where ξr and
ξi are given in (24) and (25) respectively. Since ξ(a+ iθ) is the
complex conjugate of ξ(a− iθ), it follows that

E2 = ξr
(
vvH + v̄v̄H)+ iξi

(
vvH − v̄v̄H) . (87)

By the definition of v and v̄, vvH + v̄v̄H = Ê1,1 + Ê2,2 and
vvH − v̄v̄H = i(Ê1,2 − Ê2,1) (Êi,j are defined in §A.1). This
gives a closed form for eY, as shown in (23).

Similarly, given X = m (sR, t) ∈ DS(2), to derive a closed
form for lnX, we need a closed form for L2 = η(sR). Let
W := lnR be the principal matrix logarithm of rotation ma-
trix R. Suppose we have diagonalized W as above. Taking the
matrix exponential of W via the expanded version in (85), we
obtain R = Qdiag(eiθ, e−iθ)QH. This leads to a closed form
for computing θ from R: θ = arctan(R2,1/R1,1). More impor-
tantly, as we substitute this diagonalized form of R to (21)
using (84) to simply the series, we get:

L2 = Qdiag(η(seiθ), η(se−iθ))QH

= η(seiθ)vvH + η(se−iθ)v̄v̄H. (88)

By directly calculating the real part and the imaginary part of
η(seiθ) = ln s+iθ

seiθ−1 =: ηr + iηi, we get closed forms for ηr and ηi
as shown in (28) and (29) respectively. Separating the real part
of L2 from the imaginary part of L2, we also have

L2 = ηr(vvH + v̄v̄H) + iηi(vvH − v̄v̄H), (89)

using the same argument as above. Therefore, we have obtained
a closed form for L2 as shown in (27), and then a closed form
for lnX as shown in (26).

A.3.2 Matrix Exponential and Logarithm in DS(3)

Finding closed forms for matrix exponential and logarithm in
DS(3) requires more work. Let Y = M (aI3 + W,u) ∈ ds(3).
Suppose W is decomposed into W = Qdiag(0, iθ,−iθ)QH (see
§A.1) where Q = (n,v, v̄), n is the normal vector representing
the axis of rotation, and v and v̄ are a pair complex conjugate
unit vectors. We can rewrite W as:

W = iθvvH − iθv̄v̄H. (90)

Dividing both sides of (90) by iθ and squaring up the result
(noticing that v and v̄ are orthonormal to each other) yields:

vvH − v̄v̄H = W
iθ
, (91)

vvH + v̄v̄H = W2

−θ2 . (92)

Since (n,v, v̄) form an orthonormal basis, we have:

nnT + vvH + v̄v̄H = I3, (93)

which leads to

nnT = I3 + W2

θ2 , (94)
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by substituting (92) to it.
Diagonalizing E3 = ξ(aI3 + W), we obtain

E3 = ξ(a)nnT + ξ(a+ iθ)vvH + ξ(a− iθ)v̄v̄H. (95)

Using the same argument as in the case of DS(2) for deriving
E2, it follows that

E3 = ea − 1
a

nnT + ξr(vvH + v̄v̄H) + iξi(vvH − v̄v̄H), (96)

where ξr and ξi are defined in (24) and (25) respectively. Sub-
stituting (90), (91) and (92) to (96), we obtain a closed form
for E3, i.e. (32), leading to a closed form for eY, i.e. (30).

Given X = m (sR, t) ∈ DS(3), finding a closed form for
ln X is done similarly. The function L3 = η(sR) gives

L3 = η(s)nnT + ηr(vvH + v̄v̄H) + iηi(vvH − v̄v̄H), (97)

where ηr and ηi are defined in (28) and (29) respectively. Sub-
stituting (94), (91) and (92) to (97), taking into account that
η(s) = ln s

s−1 , we obtain a closed form for L3, (35). A closed form
for lnX follows, (33).

It can be verified that our closed forms for eY and ln X are
generalizations of those derived for SE(3) presented in (Agrawal,
2006), i.e. when s = 1.

A.4 Proof for Theorem 1

Note that in this theorem we only consider input sets {(Xi,wi) ∈
DS(n)×R+}Ni=1 for which the mean is unique. A recent study
from Arnaudon and Miclo (2014) shows that in a complete man-
ifold including DS(n), the mean induced by the Riemannian
distance dR via (7) is almost surely unique.

The sum of squared divergences in (6) under dL is expressed
as:

E(X) = wi
∥∥ln(X−1

i X)
∥∥2

F
. (98)

We rely on the minimal representation φ in §2.1 to derive the
proof. Let lZ(x) := φ−1 ◦ LZ ◦ φ(x) be the equivalence of the
left translation operator LZ for some Z ∈ DS(n) under φ. By
inspection, we establish the following equations:

lZ(x)s = lnZs + xs, (99)

lZ(x)r = ln(Zrex×
r )×, (100)

lZ(x)t = ZsZrxt + Zt. (101)

In this section only, we work on the inverses X−1
i instead

of Xi themselves so that we can expand ln(X−1
i X) easily. Let

m (siRi, ti) := X−1
i for all i = 1, . . . , N . Via φ, using (20), (99)

to (101) and the fact
〈

In, ln(Riex×
r )
〉

= 0 since the diagonal
part of any skew-symmetric matrix is zero, (98) expands to:

E(φ(x)) = nwi(lnsi + xs)2 + wi
∥∥∥ln(Riex×

r )
∥∥∥2

F

+wi
∥∥η(Zi(x))zi(x)

∥∥2
, (102)

where Zi(x) := siexsRiex×
r and zi(x) := siRixt + ti for all

i = 1, . . . , N , and η(·) is defined in (21).

A.4.1 Non-translation-compatibility

Without loss of generality, we set (si,Ri) = (s̄, R̄) for all i =
1, . . . , N and some constant s̄ > 0 and R̄ ∈ SO(n). Instead of
finding the mean X, we prove that for any t ∈ Rn,m

(
s̄−1R̄T, t

)
cannot be a mean (note that we are working with X−1

i ). If this
is the case, the actual mean(s) cannot be translation-compatible.

Differentiating (102) with respect to a variable xs yields:

∂E ◦ φ
∂xs

= 2nwi(xs + lnsi) + wizi(x)Tη′s(Zi(x))zi(x), (103)

where η′s(Zi(x)) is given by (omitting the variable x):

η′s(Zi) := ∂η

∂xs
(Zi)Tη(Zi) + η(Zi)T ∂η

∂xs
(Zi). (104)

Since ∂Zi

∂xs (x) = Zi(x) for all i = 1, . . . , N , we get:

∂η ◦Zi

∂xs
= ∂

∂xs

∞∑
k=1

(In −Zi)k
k + 1

=
∞∑
k=1

k∑
l=1

−1
k + 1(In −Zi)l−1Zi(In −Zi)k−l.

=
∞∑
k=1

−k
k + 1(In −Zi)k−1Zi. (105)

where the last equation holds because Zi commutes with (In−
Zi)l for all integer l.

Let x̃ := φ−1
(
m
(
s̄−1R̄T, t

))
for an arbitrary translation

t ∈ Rn. By definition, Zi(x̃) = In for all i = 1, . . . , N . At point
x = x̃, we apply (105) to find the derivative of η(Zi), and (21)
to evaluate η(Zi) itself, we get:
η ◦Zi(x̃) = In, (106)

∂η ◦Zi

∂xs
(x̃) = −0.5Zi = −0.5In. (107)

It follows from (104) that:

η′s(Zi(x̃)) = −In. (108)

Substituting the equation back to (103), we obtain:

∂E ◦ φ
∂xs

(x̃) = −wizi(x̃)Tzi(x̃) = −wi
∥∥zi(x̃)

∥∥2
. (109)

Clearly, the right-hand side of the above equation is always neg-
ative. Because the partial derivative ∂E◦φ

∂xs at x̃ does not vanish,
no direct similarity m

(
s̄−1R̄T, t

)
can be a mean, proving the

actual mean is not translation-compatible.

A.4.2 Scale-compatibility and rotation-compatibility

To verify scale-compatibility and rotation-compatibility, we set
ti := −s−1

i RT
i t̄ for all i = 1, . . . , N and some constant t̄ ∈ Rn

(so that all Xi’s translation components equal t̄).
Differentiating E ◦ φ(x) with respect to xt yields:

∂E ◦ φ
∂xt

= 2wizT
i η(Zi)Tη(Zi)siRi. (110)

It immediately follows that the derivative ∂E◦φ
∂xt only vanishes

when xt = t̄, at which point the third term of (102) also van-
ishes. When this occurs, Xs becomes a geometric mean, and
Xr becomes the mean of rotations under the intrinsic Rie-
mannian distance (Park and Ravani, 1997). Hence, the scale-
compatibility and rotation-compatibility properties are verified.
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A.5 Proof for Theorem 2

We will prove the third statement, i.e. for translation-compati-
bility. The other two statements follow analogously.

Suppose all direct similarities are written as xi := φ−1(Xi),
and the mean of them X̄ is written as x̄ := φ−1(X̄) under
the map φ. Denote by xsr the first nr + 1 components of x.
Translation compatibility means that if for all i = 1, . . . , N ,
xi;sr = t′ for some constant t′ ∈ Rnr+1, then x̄sr = t′. We
will prove that the following statements are equivalent to each
other.
– A: every unique mean induced by g is translation-compatible,
– B: T (n) is totally geodesic in DS(n).

A.5.1 From A to B

Choose any two points x,y ∈ Rnds such that xsr = ysr = 0
and that φ(x) and φ(y) are within the injectivity radius of
each other. Suppose γ(u) is the g-geodesic with the arc-length
parameterization going from γ(0) = φ(x) to γ(a) = φ(y) for
some constant a > 0. It suffices to show that φ ◦ γ(u)i = 0 for
all u ∈ [0, a] and all i ∈ Js ∪ Jr.

Suppose there is a number u0 ∈ (0, a) and a dimension
i ∈ Js ∪Jr such that φ ◦ γ(u0)i 6= 0. Let u1 < u0 be the largest
number such that φ ◦ γ(u1)i = 0 and u2 > u0 be the smallest
number such that φ◦γ(u2)i = 0. Then, for any u ∈ (u1, u2), we
must have φ◦γ(u)i 6= 0. However, γ( u1+u2

2 ) is the mean of γ(u1)
and γ(u2). Hence, by our translation-compatibility definition,
φ ◦ γ( u1+u2

2 )i = 0, leading to a contradiction.
Therefore, T (n) is totally geodesic in DS(n).

A.5.2 From B to A

We only have to show that the mean is translation-compatible
when all direct similarities Xi are in T (n). For other cases,
the direct similarities must live in a coset ZT (n) := {ZX :
X ∈ DS(n)} of T (n) for some Z ∈ DS(n). In these cases, we
left-translate the direct similarities by Z−1, compute the mean,
left-translate it by Z, and obtain a translation-compatible mean
because the metric tensor g is left-invariant.

Suppose the induced metric tensor of g on T (n) is g′. Let
dR and d′R denote the Riemannian distance in DS(n) and T (n)
respectively. In fact, d′R is just the restricted version of dR
on T (n). Let X̄′ be the mean induced by d′R restricted to
T (n), which is automatically translation-compatible. It suffices
to prove that X̄′ = X̄.

Let f ′i(X) := d′R(X,Xi)2 be the function that measures
the restricted squared Riemannian distance between any trans-
lation X ∈ T (n) and a given direct similarity Xi. Let fi(X) :=
dR(X,Xi)2 be the corresponding version in DS(n). By defini-
tion,

X̄′ = argmin
X∈T (n)

wif ′i(X), (111)

X̄ = argmin
X∈DS(n)

wifi(X). (112)

According to (37), the gradient of f ′i(X) is minus twice
the velocity of the g′-geodesic γ that starts at γ(0) = X and
ends at γ(1) = Xi. Since this geodesic is also the g-geodesic
connecting X with Xi, we must have gradf ′i = gradfi. Hence
grad(wif ′i) = grad(wifi). This implies that both gradients van-
ish concurrently. In other words, a g′-mean is also a g-mean.

This statement alone does not ensure that a g-mean is a g′-
mean. However, because we restrict ourselves to the case that

the g-mean is unique, if g′-mean exists, it must be the unique g-
mean. Clearly g′-mean exists because the variance (6) is lower-
bounded by 0 and T (n) is locally compact.

Therefore, X̄′ = X̄.

A.6 Proof for Theorem 3

First, we determine the expression of the metric tensor at each
element X ∈ DS(n). Let U be a tangent vector at X with local
coordinates u := ϕx(U). Let U′ := dLX−1 (U) = X−1U and
let u′ := ϕ0(U′) be its coordinates. By inspection, the linear
relationship between u and u′ is given by:
u′s = us, (113)
u′r = Ψ̃xrur, (114)

u′t = e−xse−x×
r ut. (115)

In other words, u′ = Dxu, where Dx is a block-diagonal matrix:

Dx :=

[ 1 0 0
0 Ψ̃xr 0
0 0 e−xse−x×

r

]
. (116)

With this, the metric tensor equation (39) at X = φ(x) has a
short form, gX(U,V) = ϕx(U)TG(x)ϕx(V), where

G(x) := DT
x G̃Dx. (117)

Next, pick two arbitrary coordinates p,q ∈ Rnds under the
map φ such that p 6= q and their first nr + 1 components
are zero: psr = qsr = 0. Consider the geodesic γ going from
γ(0) = φ(p) to γ(1) = φ(q). Let its coordinate functions be
x(u) := φ◦γ(u). We will prove that T (n) is not totally geodesic
in DS(n) by showing that no such γ exists that also satisfy
x(u)sr = 0 for all u ∈ (0, 1).

In Riemannian gemetry (e.g. see (Lee, 1997)), geodesics
obey the following geodesic equations, for all k = 1, . . . , nds:

ẍk(u) + ẋi(u)ẋj(u)Γi,j;k(x(u)) = 0, (118)

where ẍ and ẋ are respectively first-order and second-order
derivatives of x, and Γi,j;k are Christoffel symbols related to
the local coordinates of the metric tensor via, for all i, j, k =
1, . . . , nds:

Γi,j;l(x)G(x)l,k = 0.5(∂iG(x)j,k + ∂jG(x)i,k − ∂kG(x)i,j),
(119)

where ∂i for all i = 1, . . . , nds are partial derivative operators.
Under the extra condition that x(u)sr = 0, we get ẋ(u)sr =

0 and ẍ(u)sr = 0, for all u ∈ (0, 1). The first geodesic equation
(k = 1) of (118) simplifies to:∑
i∈Jt

∑
j∈Jt

ẋi(u)ẋj(u)Γi,j;1(x(u)) = 0. (120)

To find Γi,j;1(x(u)) for all i, j ∈ Jt, we substitute (117) to (119)
and obtain Γi,j;1(x(u)) = H(u)i,j , where:

H(u) := 2e−2xsex×
r G̃tte−x×

r , (121)

and G̃tt is the n-by-n bottom-right submatrix of G̃ (the matrix
representing the metric tensor restricted to translation only).
We rewrite (120):

vt(u)TH(u)vt(u) = 0. (122)
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Analyzing H(u), we realize that this matrix is symmetric positive-
definite since G̃tt is symmetric positive-definite, ex×

r is a rota-
tion matrix whose inverse is e−x×

r , and e−2xs > 0. Thus, (122)
holds if and only if vt(u) = 0 for all u ∈ (0, 1). Clearly, this
is not possible because otherwise, we must have xt(0) = xt(1)
(since ẋt(u) = vt(u)), leading to p = q.

Therefore, any geodesic from φ(p) to φ(q) must not lie
entirely in T (n), proving T (n) is not totally geodesic in DS(n).

A.7 Proof for Theorem 4

To prove that dα is left-invariant, we show that dα is related
to a pseudo-seminorm by the formula dα(X,Y) = hα(X−1Y),
where

hα(Z) :=

√
(lnZs)2

σ2
s

+
‖Zr − In‖2

F
σ2
r

+ ‖Zt‖2

σ2
tZ

1−α
s

, (123)

X−1Y = m

(
Ys

Xs
XT
r Yr,

XT
r (Yt −Xt)

Xs

)
. (124)

Evaluating hα(X−1Y)2 yields:

hα(X−1Y)2 = (lnYs − lnXs)2

σ2
s

+

∥∥XT
r Yr − In

∥∥2
F

σ2
r

+

∥∥XT
r (Yt −Xt)

∥∥2

σ2
tX

1+α
s Y1−α

s

= dα(X,Y)2, (125)

where the last equation holds because the Frobenius norm and
the vector norm are rotation-invariant. Since X−1Y = (ZX)−1(ZY),
it follows that hα(X−1Y) = hα((ZX)−1(ZY)), proving dα is
left-invariant.

A.8 Proof for Lemma 6

The weighted sum of squared divergences in (6) can be rewritten
as:

widα(Xi,X)2 = Es(X)
σ2
s

+ Er(X)
σ2
r

+ Et;α(X)
σ2
t

, (126)

where Es(X) = wids(Xi,X)2, Er(X) = widr(Xi,X)2, and
Et;α(X) = widt;α(Xi,X)2. Since Xr only appears in Er(X),
we obtain
Xr = argmin

R∈SO(n)
wi
∥∥R −Xi;r

∥∥2
F
.

= sop(wiXi;r), (127)
where the last equation follows from (79). Likewise, since Xt

only appears in Et;α(X),

Xt = argmin
t∈Rn

wi
X1+α
i;s

∥∥t−Xi;t
∥∥2
, (128)

and (60) follows.
To find Xs, we substitute Xt back to (6) and remove the

rotation term Er(X)
σ2
r

, we obtain an optimization problem:

Xs = argmin
s∈R+

wi
σ2
s

ln( s

Xi;s
)2 +

wi/σ2
t

X1+α
i;s s1−α

∥∥Xt −Xi;t
∥∥2
. (129)

Setting z = lns, we obtain the convex objective function (58)
which is a sum of a quadratic term and an exponential term,

the minimizer of which satisfies a transcendental equation Az =
eBz for some constants A,B, therefore cannot be expressed as
a closed form. However, any Newton-based approach would suf-
ficiently find the minimizer.

When α = 1 the exponential term vanishes, and we get
(61).
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