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|PAPER Special Section on Machine Vision and its Applications
Homogeneous Superpixels from Markov Random Walks

Frank PERBET, Bjorn STENGERT, and Atsuto MAKI 7@,

SUMMARY  This paper presents a novel algorithm to generate homo-
geneous superpixels from Markov random walks. We exMiaitkov clus-
tering (MCL) as the methodology, a generic graph clustering mebased
on stochastic flow circulation. In particular, we introdwecgraph pruning
strategy calleccompact pruningn order to capture intrinsic local image
structure. The resulting superpixels are homogeneougniéorm in size
and compact in shape. The original MCL algorithm does ndeseall to

a graph of an image due to the square computation of the Marlaivix
which is necessary for circulating the flow. The proposedimg scheme
has the advantages of faster computation, smaller memotpriot, and
straightforward parallel implementation. Through conigars with other
recent techniques, we show that the proposed algorithneaehistate-of-
the-art performance.

key words. superpixels, Markov clustering, compact pruning, sparse m
trix computation

1. Introduction

The unsupervised over-segmentation of an image results in &g
small patches of pixels commonly calledperpixels The
objective of superpixels is to encode an input image in a
compact manner at a low-level preprocessing stage while |
reflecting most of the structural information to facilitae
higher-level task such as classification. Thus, two of the im
portant requirements for superpixels are (a) that theylshou s ey
be computed fiiciently, and (b) that they are perceptually riq 1 MCL-superpixels process: overview.Top-left: the input
meaningful with local coherency. image. Top-right: the input image and an overlaid graph ith
One of the first methods to compute superpixels ap- similarity function (graph edges overlaid). Middle: imeediate
peared in [18] where the Normalized Cuts criterion [20] States. Bottom-left: the result, i.e. a set of disjoint ¢reBottom-
was used based both on contour and texture cues. The rer_|ght: the borders between those trees showing clusters.
sulting oversegmentation successfully generates a homoge
neous representation of superpixels, which was later eghpli
to guide model search [14]. However, for a preprocess-
ing stage it introduces significant computational cost. An
alternative method is to employ mode seeking techniques
such as mean shift [1],[2], [4], medoid shift [19], or the re-
cently introduced quick shift [22] which was employed for
example in the context of localising object classes in im-

ary between two regions while representing an image as a
graph. A number of recent vision applications compute su-
perpixels as a preprocessing stage in order to reduce the
computational burden during later stages, see [7],[23] for
examples.
An important remaining challenge is, however, to ef-
ages [5]. Other methods include top-down approaches suct{'c'emly generatg homoggnepus, I.€. unn‘qrm in size and
compact, superpixels, which is the goal of this work. Homo-

as superpixel lattices [13] or TurboPixels [8], and bottom- el ferred f . laorith
approaches such as the graph-based approach in [3] whicl§€NEOUS SUPETPIXEIS are prelérred ior Some vision aigori
while superpixel representations should be accommodated

defines a predicate for measuring the evidence for a bound-to different tasks; see [9]. [15] for a few examples. In object

Manuscript received October 5, 2011. detection and tracking [15], a probability is assigned tchea
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Toshiba Research Europe. perpixels allow us to consider the parts as similar building
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filtering whose smoothing power is adapted to the estimates. Wg‘*@ﬂ%ﬁaﬁ’fﬁg
Homogeneity of superpixels is essential for consistergly e Gy 3
timating the noise over the entire image. The nice property
of producing homogeneous superpixels is also discussed in
a few recent articles [8], [10].

In this paper, we present a new anfi@ent approach
to compute superpixels using Markov random walks on the
graph representation of an image. The use of random walks
in computer vision traces back to the early work on texture
discrimination [24], and more recently the work of [6] moti-
vated it for interactive image segmentation using seeddabe
It was also shown that Normalized Cuts [20] can be viewed
as a process of random walks [12]. Although we also utilise
the stochastic matrix representation, our approaftbrdiin
that we do not perform any spectral analysis of the adja-
cency matrix and mainly exploit the fact that random walks
can capture intrinsic local image structure.

We base our approach on Markov Clustering (MCL)
[21], a general purpose graph clustering algorithm using
stochastic flow circulation. The motivations for using MCL
as a clustering algorithm are primarily in its suitabilitych
ability to extract local image structure that are expected b
its nature [21] as well as in the previous success in its ap-
plication to video segmentation [16]. See Figure 1 for an
overview (we refer to our approach as MCL-superpixels for
convenience). However, MCL, in its original form, produces
non homogeneous superpixels. See Figure 2 (a) for an ex- .
ample. Furthermore, it does not scale well to large images (b) MCL-superpixels
as it fails to compute the square of the stochastic matrix in Fig.2 A comparison of clustered pixels. (a) The superpixels
a reasonable time, in spite of using a standard sparse magenerated by the original MCL process are not homogeneous in
trix scheme; for a mega-pixel image, the size of this ma- Si€ and shape. (b) Extending MCL with our nesmpact pruning
trix contains 182 elements. To address these two limita- "SSUItS IN more homogeneous superpixels.
tions, we extend MCL with the technique edmpact prun-
ing, the main idea of which is to enforce the flow circula- h f simil Intuitivel i
tion to be local, therefore producing more homogeneous su—SmOOt areas ot simiiar appearance. INtitively speaxing,
perpixels and making the flow computation tractable at thethe second operator, calledflation, makes strong edges
same time. This results in a nesparse matrix computation stronger and weak edges v_veaker, Serving the dual PUrPOS
schemawhich is capable of dealing with large matrix sizes of creating cluster boundaries and electing a represeatati

and dficiently runs on parallel computing architectures such of each cluster at the same time. After convergence, i.e.
as GPUS y P puting when the graph is stable under those two operators, the re-

Hence, the contributions of this paper are (i) a novel sulting graph is a disjoint set of trees, i.e. clusters (3geLF

method to generate superpixels using MCL, (ii) a new prun- bottom-left).

. : . More precisely, let us define an undirected gr&pk
ing strategy for MCL calle¢@ompact prunindor generating (V. E) with r?odew eyV and edges ¢ E. We denote gnquge
more homogeneous superpixels, and (iii) a rsparse ma- ’ ’ '

. . . e, spanning two nodes, andug, as€’ and the value of its
trix computation schem&hich allows us to lower the com- 'ph geB . $"| y Uf:_ é . ‘ d
putation time and the memory consumption, and to exploit WeI9ht asw(&,), or simplyws,. First, G is transformed to a

parallel architectures. We also compare the performance Oil\/llcarkovgraph, Le. a graph V\(/jhere for all nodes the \;veights
our approach with other recent techniques for computing su-o_dOUt'r:e ges ﬁre positive an sumkto one. Let us also con-
perpixels [3], [13], [18], [22], both in terms of the charast  Sider the stochastic matrix (or Markov matrix),

istics of output superpixels and the computational speed. M = (wg’ a,B € [L,N]), 1)
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2. MCL: the Markov Clustering Algorithm which corresponds to the Markov graph, such that each en-
try is the edge weighty?, andN is the total number of

We first briefly review the Markov Clustering (MCL) algo- nodes.

rithm [21]. Given a stochastic graph, the main idea of MCL The expansionoperator corresponds to the squaring

is to repeatedly apply two operators on it. The first operator of M whereas thenflation operator corresponds to taking

calledexpansionconsists of flow circulation which tendsto the Hadamard power of a matrix (applying power function
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element-wise) followed by a scaling step, such that the re-
sulting matrix is stochastic again. In sum, given a non-

negative stochastic matrisM, of a Markov graphG = A Al / = &év,
(V, E), the steps can be formulated as ik "
process
M, = M? expansion (2)
M1 = Hp(M2) inflation (3) Ry
Mnew = N(M l) (4) & < ‘ S

MCL process

whereH(-) and N (:) represent element-wise power opera-
tion with a power cofficient, p, and column-wise normali-  Fig.3 Evolution of flow around each node.The black dot and
sation, respectively. The steps are repeated while uggatin the arrows schematically represent the node and the edgieg-(p
M with M ,e,. The process stops when it reaches an equilib- ing their destinations) of the graph, respectively. Thehian of

fium where the dference observed betwelhandM q, is the MCL process is shown from left to right. Top: During the MC

. . process, the edges originating from a given node typicalhgad
below a small threshold. At this stage, the resulting graph, ¢ the beginning (byexpansioh and finally converge at the end.

described by the resultant stochastic matrix, appearsets a s Bottom: Our new compact pruning strategy bounds the lenfyth o
of disjoint trees whose union covers the whole graph. Eachthe new edges (generated éxpansiohby the radius (represented
tree defines a cluster which can be uniquely represented bywith the red circle) and thereby limits the initial spreacda flow
the tree root. Thus, a given node can simply retrieve the circulation, achieving faster convergence.

identity of the cluster to which it belongs by tracing theetre

up to its root. _ _ from two limitations:
The mostimportant parameter governing the behaviour ygp homogeneous pixelsThe shape of the resulting super-
of the MCL process is the inflation parametgywhich in- pixels are not homogeneous in size and shape (see Figure

fluences the resolution of the output. A large inflation value » (a)). Indeed, MCL does not prevent clusters from notice-
produces a large number of smaller clusters and vice Versaaply varying in size (e.g. from several pixels to hundreds),

It should be noted that the number of clusters generated by, goes it prevent cluster shapes from becoming complex
MCL is emergent (i.e. not set directly). In practice the con- (not compact).

vergence time of MCL greatly depends on the target reso-gjow computation time The bulk of the process of the
lution of clustering; the coarser the expected clusters are ;¢ algorithm is spent on computing the square of the
the longer the computation. Moreover, the convergence ofgigchastic matrixM2. For large images (e.g. one mega-

MCL is known to be more stable for fine resolution [21]. It 5ixel) the computation time and memory footprint becomes
is therefore well suited to the computation of superpixeis f very high. As a way to keep the computation tractable

which a fine resolution is typically required. the standard MCL implementation [21] comes with several
) ) , pruning strategieswhich aim at approximating the matrix
3. Clustering Image Pixels Using MCL M by keeping it as sparse as possible. Unfortunately, our

) . _ o ) experience shows that these pruning strategies do not per-
We interpret an input image, with sizeny x n, pixels a8  t5rm well when dealing with graph representations of im-
a graphG = (V,E). Each pixel corresponds to a node in - g4es which are typically sparse but of an extremely large di-
the setv = {vrj) | T(i, J) € [1,nd x[1.n,]). Theflatindex — pension. A possible reason is that the simple process of re-
functionf(i, j) = j-nc+i returns a one dimensional index (0 1,4ying the smallest entries of the matrix does not decrease
the node i ). The number of nodesy, is the total number 10 cost for computing? in a systematic manner and is
of pixels; N = n.n,. The set of edgest = {€;}, connect tnerefore not stiicient for certain clustering tasks although
neighbouring nodes, €.g,-1(.j) andus=t(mn). it helps solving a problem with a relatively small scale. For

In order to reflect the image structure in the graph, a eyample, the result in Figure 2 (a) required 58 seconds to

common feature of graph based image analysis is to define Broduce around 2000 superpixels on the 0825 pixels
function that maps a fierence in image intensities to edge image and ran out of memory when using a 182268 pix-
weights. Although various weighting functions can be used, o5 image as inpui.

in this paper, the adjacency matrix is initialised usingma-si We deal with those two limitations by extending MCL
ple similarity measure considering an 8-neighbourhood us-,;ith acompact pruningnethod as described next.
ing a typical function given by:

uf = exp(—u IN[m n] = 1[i, j]IP), (5) 4 CompactPruning

wherel[i, j] = (r,g,b) denotes the intensity of the image We develop a new scheme to allow a better control of super-
over the available channels. The valueua$ a free param-  pixel homogeneity and guarantee sparsity of the stochastic
eter (we usg: = 10 in our experiments). matrix that allows a fast computation bf2. The scheme,

As explained earlier, applying the original MCL pro- calledcompact pruningis primarily based on the observa-
cess to produce superpixels is straightforward but fitess tion that for a fine resolution (to generate small clustehs),
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nipulates the inflation operator to enforce matrix sparsity
Figure 4 demonstrates th&ect of changing the compact
pruning radius: the greater it is, the larger are the sugerpi
els. In that sense, the distance threshadohd the inflation
parametelp play an overlapping role: both control the res-
olution of the clusters. We will evaluate the behaviour of
superpixels for diferent values of andp in Section 6.2.

5. Sparse Matrix Computation Scheme
5.1 Node-centric matrix encoding

As stated in Section 3, given a large stochastic matfix
with dimensions equal to squared image size, a proper strat-
egy for matrix encoding is indispensable in order to keep
the algorithm feasible both in terms of computation time
and memory consumption. For this requirement, we opt
for a node-centric representation which retains the image
as the basic 2D structure of the graph: each node contains
the edges which are departing from it. Consequently, edge
weights are stored in a volur@whose size igi x n, X Ne
wheren,xn, is the size of the inputimage ant is the num-
ber of edges departing from each node (i.e. pixel). Thanksto
the compact pruningcheme, the maximum number of non
null edges departing from a given node is known in advance,
Fig.4 MCL-Superpixels with different compact pruning.  gjlowing us to allocate the volume only once at initialisati
MCL-superpixels computed with tierent distance threshold, i.e. See Figure 5 for a schematic.
pruning radmsr. The inflation parameter is set { = 14. A O _
greater radius produces larger superpixels. ~ The edge entry/]i, j; ], starts from the node, ; to
point a node ati( j) + offset[e] where the tableffset
represents anftset defined by a small precomputed table
ﬂOW doeS not Circulate glOba”y in the WhOle graph but in' Containing all the 2D jumps which can be made from a
stead stays nearby a given node. Therefore, one can providgiven node. For example, for= 1, the table inffset =
a reasonable upper bound on the length of the new edgef(o, 0), (-1,0), (+1,0), (0, 1), (0, +1)]. Due to the regular
which are created during the expansion step of the MCL nature of an image graph, a unique table is shared by all the
process. Let be a simple threshold on the straight-line dis- nodes instead of computing it specifically for each node.
tance between the centers of pixels ensuring the following

condition during eackxpansiorstep: 5.2 Sparse matrix multiplication scheme
i f(mn) _

M. n) =@ D> T = iy =0 (©) A notable benefit of this new matrix encoding is that it sub-
Figure 3 shows the concept of using compact pruning wherestantially facilitates the square computation of the ststic
the initial spread due to flow circulation is limited by inftib matrix, M. Each element dfl, = M? in its original form is
ing edges longer than a threshaldSee Figure 2 (b) foran  given by:
example of MCL-superpixels.

Note that this is an approximation whereas the MCL B Y uf

. ; ) wy = wa - (7
process comes with a theoretical proof of convergence; a
stochastic matrix, when taken to any power, remains a
stochastic matrix, which means that the elements of eachlLet us review the meaning of (7) from a graph point of view.
column sum to one. When this approximation is used, someThe Weight,wg, of an edgeeﬁ, is replaced by the sum of
entries corresponding to long edges will be missing and thethe products of weights on all the 2-paths (i.e. 2 consecu-
sum of the elements of a column can then be lower thantive edges) linking the node, anduvg via a third nodep,.
one. In practice, however, our modified MCL converges for Retrieving those 2-paths at computation time would be very
all the images of the Berkeley database [11]. This is not expensive. Instead, the new encodiigllows us to quickly
surprising as the original MCL has been shown to be robustdetermine which edges depart fram.
to all types of pruning strategies which manipulate the infla We introduce a more fiective alternative by pre-
tion operator to enforce matrix sparsity [21]. computing all those 2-paths. This pre-computing would be

The distance thresholding can be seen as another pruntoo memory expensive in an irregular graph because each
ing strategy (hence the nammempact pruninyj which ma- node would need its own set of 2-paths. Fortunately, the

r=4 r=6

y=1
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5
7F Store the entire G as a volume:
A2 Vs t e Vmn
; 7 v I g second 5
i 1-paths Imade
\_—AT height
For each pixel E/Tj -
Store the weights of all the
1-paths edges in a table.
Image width
Fig.5 Node-centric matrix encoding. Left: The weights of all Nodes (pixels)

the 1-path edges starting from a pixel are stored in a tabke (t
distance threshold is set to= 2.5 in this figure). Right: Edge
weights in the entire grap& are stored in a volume.

Fig.6 Precomputation of 2-paths. Nodes (pixels) are shown
in blue dots. Left: The tableffset is indexed (with zero-
based indexing) by € [0,N. — 1] and contains the 2D jumps
offset[e] = (0« 0,) allowing to jump from a given node;
) . to its neighbourvy,, with (m,n) = (i, j)+ offset[e]. In this
regular nature of an image graph allows us to factorise thosecasepffset=[(0,0), (1,0), (L 1), (0, 1), (-1, 1), (-1,0), (-1, - 1),
sets into a single look-up-table. During the computation of (0,-1), (1,-1)] (in red). Right: For a given edge indexed by
M2 with the new matrix encoding, the weights on edges in- the tabledetour[e] contains the indiceseg;rs:, esecona) allow-
dexed bye € [0, Ne—1] (note the use of zero-based indexing) Ilgc?r t’xg’r;n;;r?;g”% éoé)dmgevi'g i”:a(‘e"’x'g(‘jg‘; p?tfhs L’E 2(]8) a(’idlgg)-
’ Oorrse = , 1),
need be updated for each nagg Tht_ae_—th edge starts from The corresponding 2-paths adetour[2] = [(L.3). (3.1). (0.2).
vi.j and arrives atmn where (n,n) = (i, j) + offset[e]. In 2,0)].
this context, a 2-path connecting ) — (s,t) — (m,n) can

be described using the indices[;st, €secona] Where

(s1) = (i, j) + offset[esirec], (8) ::ig(rer,] it can slow do_wn the process by a factor of three. _This.

plexity analysis shows one weakness of our algorithm:
(mn) = (st) + offset[esecond]- (9) it will not perform well for a large radius. As a conse-

guence, it means that generating superpixels with large are
will perform poorly. In practice we found that MCL per-
forms well when generating superpixels with an area of less
than 150 pixels.

Therefore, we can precompute a look-up-table which en-

codes 2-paths by two indicesg; sy and esecong, fOr €ach

e € [0, Ne—1] (see Figure 6). We denote the tablelasour

since it represents 2-paths via a third node. . . - .
The pseudo code of the algorithm below clarifies the Note that the complexity of the naive original MCL is

process that each element6fis systematically updated in N3. Nevertheless, using some optimisation techniques such
Loo: as keeping the graph sparse, this complexity becddiés
new -

wherek is the maximum number of edges per node; in our
case,k = r?, which leads to the same expressionNaf*.
This fact leads to an interesting discussion about the reaso
P why our method ffers such a significant speed up over the
m,n) = (i ffset e . L
Evm,n): (1)) + offsetle] original MCL. The complexity of the original MCL algo-
b rithm is governed by the cost of a matrix-matrix multiplica-
for (efirst, det . ) X . . P
E:’ftl)r: ((ies]?)coid())foszt?:r.[E]] tion. This operation can be implemented in parallel if using
St ppii first a full storage of the adjacency matrix but as stated before,
w, . = L[L B efirst] . . . P
K doing so would be infeasible for a large graph. The original

we = .E[S,t e d] . .. .
e st o MCL algorithm resorts to traditional sparse matrix represe
w = W w

functioncomputeFla(L, Lne,)
for// (i, j) € [0, nx=1]x[0, n,—1] # parallel execution
fore e[0,Ne—1]

- Wi i,j st tations: while gaining a big performance improvement on a
Lnali, J; €] = w.m,’n single thread, those schemes typically do not map well to
highly parallel architectures. By adopting our new sparse
5.3 Computational complexity analysis matrix representation which naturally maps well to highly
parallel architectures, we keep the best of both worlds and
The computational complexity of our algorithm I8 achieve similar results up to one hundred times faster.

whereN is the number of pixels andthe pruning radius.
The termr* comes from the fact that for a given nodes, 54 gpy implementation
the set of detours are all the non repetitive choices of 2

. - . 2 . .
neighbours within the neighbourhood, that({§), whichis  The algorithm to computel2 using node-centric matrix en-
asymptotically equivalent to*. Another important factoris  coding maps well to parallel architectures like GPUs by run-
the inflation parameter which influences the number of iter- ning a single thread per pixel. Computing the inflation is
ations required to converge. The influence of inflation is not also straightforward, one thread per pixel. We have there-
shown in the complexity and hidden in the constant: in prac- fore implemented the entire MCL process on a GPU. On
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small images, we observed a 10-fold speedup (on larger im- ____ | Time[s] VoA Q E _ recal
ages, the original MCL runs out of memory). MCL-superplers. 21.45 0.33 0.81 0.46 0.79
; . , NCuts [18]: 2315 013 083 046 074
We implemented our algorithm using Cuda on a GPU Quick shift [22]: 2556 082 063 052 085
NVIDIA Quadro Fx 4600 using single precision floating | Lattice [13]: 0537 093 057 050 081
point (345 GFLOPs). The original MCL runs on the CPU, | Graph-based [5]: 0232 275 049 047 0.93

an 8-cores 2.3 GHz computer with 3.25 GB of RAM.

Table 1 Evaluation of different approaches. The results are
averaged for all the images of Berkeley database [11]. Temge
area of superpixels is 100 pixels. See Section 6.1 for thHeatian

. L criteria. Note that MCL-superpixels achieve similar perfance
We evaluate the MCL-superpixels through qualitative com- o NCuts but with a higher speed.

parison with four other existing methods which we refer to

as: NCuts (the Normalized Cuts) [18], Quick shift [22], Lat- )

tice [13] and Graph-based [3]. We employ the Berkeley average of the measuresin (11) acrossak = 1,..., K.

database [11] and use all 300 images in the experimentsBoundary Recall We also employ standard boundary recall

See Figure 8 for the quality of superpixels for a few exam- which is dgflrjed by the fract|0n of the ground truth edges

ple images; ‘Tiger’ image (part of the original, 133100 that faII.s within a small distance threshold fror_n at least on

pixels) and ‘Starfish’ image (484321 pixels). _superplxel b_oundary. We set the threshold strictly to 1lpixe
Our comparison focuses on the generation of a largein Our experiments and calliecall;.

quantity of small superpixels; therefore we keep the number ~ Note that both, undersegmentation error and boundary

of clusters resulting from each method similar. In this eval "€call, are somewhat subjective due to the manually anno-

uation, we compute the MCL-superpixels using the MCL tated boundaries that serve as ground truth.

inflation parameterp = 1.4, and the distance threshold for )

compact pruning; = 4.5. For the evaluation we average the 6-2 Evaluations

measures across all images in the database.

6. Performance Evaluation

Table 1 shows our study on the performance @edent ap-
6.1 Evaluation criteria proaches. Figure 8 demonstrates the quality of generatec
superpixels. Although Quick shift, Lattice and Graph-luhse
As the evaluation criteria of homogeneity, we study the are considerably faster, these methods are less suitable tc
variance of areas and compactness. Using ground trutfProduce small and homogeneous superpixels. They also re-
annotations provided with the database, we also examinesult in high values of variance of ar&oA and low com-
the undersegmentation error and boundary recall as metPactnesL.
rics of superpixels. We commonly denote superpixels as ~ NCuts produces apparently similar superpixels to

s, j = 1,...,K and their areas in number of pixels Ats;), MCL-superpixels. One dlierence is that NCuts superpixels
respectively. appear to better follow linear colour boundaries at the cost

of generating long and thin superpixels in some parts. Fig-

Variance of Area One measure of homogeneity of super- ure 7 shows a zoomed-in view of the results for the ‘starfish’
pixels is in terms of the area since the size of superpixelsimage by NCuts and MCL-superpixels; it can be observed
is an important factor. We compufeeas the average of  that MCL-superpixels are generated more faithfully to lo-
A(Sj), andVOA the varianceof A(SJ) normalized byAreaS cal edges although NCuts achieves a Sllghtly better overall
as a measure of size. score of compactnes3. We also tested our algorithm and
CompactnessWe evaluate the compactness of superpixels NCuts on a larger image of size 102468 pixel; our algo-
in terms of theisoperimetric quotientQ;, based on their rithm completed in a minute and NCuts could not complete
shapes,

o 47TA(Sj)

EC)
whereL(s;) is the perimeter 0§;. Notice that, 0< Q; < 1.
The closer the shape ef is to a circle, the highe®); is. We
computeQ = (1/K) 2;11 Qj for each image.
Undersegmentation Error We compute a quantifiedn-
dersegmentation errowhich measures the total amount of

leaking caused by superpixels against overlapping ground
truth segment. That s,

(10)

Fig.7 Zoomed-in views. Superpixels computed in a part of

[Zssntez0 A(S)H] — Alt) ‘Starfish’ image is shown. Left: NCuts. Right: MCL-superglix
= Al (11) (proposed). Regular superpixels are generated by bothoagth
(t) but boundaries of MCL-superpixels are faithfully aligneddcal

wherety, ..., tx are ground truth segments. We compute the edges.



PERBET et al.: HOMOGENEOUS SUPERPIXELS FROM MARKOV RANDONANKS

I H45
3 -%%".

=
i

Fig.8 Superpixels by diferent approaches. Two examples are shown (‘Tiger’ and
‘Starfish’). From top-left to bottom-right: Input image, M&uperpixels (proposed),
NCuts, Quick shift, Lattice, and Graph-based. Note thasihe and shape characteristics of
superpixels are flierent from one another. MCL-superpixels and NCuts geneetdévely
regular superpixels.

due to an out of memory error caused in dealing with large MCL-superpixels or NCuts, which all take on certain regu-
matrices for the spectral analysis. larities. This reflects the fact that the ground truth segmen
One of the evaluation criteria based on the ground truth are not necessarily compact and the two methods perform
is the undersegmentation errd, MCL-superpixels and  well capturing non-compact regions as superpixels while
NCuts both achieve the lowest value Bfamong the five  trading df the score of compactness.
methods. Intuitively, the compact nature of superpixels Although we have used fixed values for distance
helps to avoid strong boundary bleeding and can decreasehreshold (the pruning radius), and the inflation param-
the error, which explains why the other three methods resulteter,p, for fair comparisons, as discussed in Section 4, both
in slightly larger errors. of the two parameters play the role of controlling the reso-
Graph-based superpixels and Quickshift on the otherlution of superpixels. Figure 9 shows the behaviour of su-
hand score higher boundary recadicall; than Lattice, perpixels obtained with various values oand p. Again,
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Fig.9 Characteristics of MCL-superpixels with different parameter settings. The
pruning radiusy, and the inflation parametep, are being changed. From left to right,
plotted are variance of areas, compactness, undersegiorrearor and boundary recalls.
The results are averaged for all the images of Berkeley datf 1].

Fig.10 Mosaic images generated by dferent superpixels. From top-left to bottom-
right: Input image, MCL-superpixels (proposed), NCutsjdRishift, Lattice, and Graph-
based. Notice the flerence in quality for example at the crosses and the regioedf
dome.

the shown results are the averages for all the images of the  In sum, MCL-superpixels achieve desirable properties,
Berkeley database [11]. While it is possible to ysas well a high score of compactnesg, and relatively low variance
asr for changing the size of clusters, the influence in terms of area,VoA while keeping a low undersegmentation er-
of the subjective evaluations are observed to be similag. Th ror, E, at a speed that is ten times faster when compared to
homogeneity appears to be generally higher for the smallerNCuts (for which no parallel implementation is available).
value of p. Ideally, those two parameters should be refor-

mulated so that one controls the size of the superpixels and7, Conclusion

the other their homogeneity; this is left for future work.

Superpixels are also useful for an approximate image\we have presented a novel method to generate superpixels
representation by replacing values of pixels, j], for ex-  ysing the MCL process, which improves the generation of
ample with the mean intensity within a superpixel. Figure syperpixels in four ways. First, it makes the shape of super-
10 shows an example of such a representation according tgixels more homogeneous by keeping the flow local. Sec-
superpixels generated byfidirent methods. In comparison  ond, the computation is faster due to a sparser stochastic ma
to the original image (top-left), some artifacts due to this trix representation. Third, the memory consumption is lowe
approximation are observed in all the five cases. However, for the same reason). Fourth, it is easily amenable to a par-
MCL-superpixels qualitatively show the best reconstartti  gjje| implementation due to a static graph topology. The key

of the original. This is clearly visible in the areas of the advance is that we exploited the nature of random walks that
red dome and the edges of the building. Note that the crosscan capture intrinsic local image structure while intradgc

is significantly better reconstructed using MCL-superfsixe  the strategies ofompact pruningandsparse matrix multi-
than NCuts. plicationscheme.
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An important aspect for further study is the stability of
superpixels across video frames between which small image
variations are exhibited. Also, interesting future worklwi
include a comparison of our method to Entropy rate super-
pixels [10] which was introduced after the original publica
tion of this work [17]. In summary, we have demonstrated [23]
the performance of our algorithm in comparison with other
relevant techniques, and shown that its capability in ggtner
ing similarly homogeneous superpixels to those by Normal-
ized Cuts but by a faster computation — a feature unique to

MCL-superpixels.
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