
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER Special Section on Machine Vision and its Applications

Homogeneous Superpixels from Markov Random Walks

Frank PERBET †, Björn STENGER†, and Atsuto MAKI †a),

SUMMARY This paper presents a novel algorithm to generate homo-
geneous superpixels from Markov random walks. We exploitMarkov clus-
tering (MCL) as the methodology, a generic graph clustering methodbased
on stochastic flow circulation. In particular, we introducea graph pruning
strategy calledcompact pruningin order to capture intrinsic local image
structure. The resulting superpixels are homogeneous, i.e. uniform in size
and compact in shape. The original MCL algorithm does not scale well to
a graph of an image due to the square computation of the Markovmatrix
which is necessary for circulating the flow. The proposed pruning scheme
has the advantages of faster computation, smaller memory footprint, and
straightforward parallel implementation. Through comparisons with other
recent techniques, we show that the proposed algorithm achieves state-of-
the-art performance.
key words: superpixels, Markov clustering, compact pruning, sparse ma-
trix computation

1. Introduction

The unsupervised over-segmentation of an image results in
small patches of pixels commonly calledsuperpixels. The
objective of superpixels is to encode an input image in a
compact manner at a low-level preprocessing stage while
reflecting most of the structural information to facilitatea
higher-level task such as classification. Thus, two of the im-
portant requirements for superpixels are (a) that they should
be computed efficiently, and (b) that they are perceptually
meaningful with local coherency.

One of the first methods to compute superpixels ap-
peared in [18] where the Normalized Cuts criterion [20]
was used based both on contour and texture cues. The re-
sulting oversegmentation successfully generates a homoge-
neous representation of superpixels, which was later applied
to guide model search [14]. However, for a preprocess-
ing stage it introduces significant computational cost. An
alternative method is to employ mode seeking techniques
such as mean shift [1], [2], [4], medoid shift [19], or the re-
cently introduced quick shift [22] which was employed for
example in the context of localising object classes in im-
ages [5]. Other methods include top-down approaches such
as superpixel lattices [13] or TurboPixels [8], and bottom-up
approaches such as the graph-based approach in [3] which
defines a predicate for measuring the evidence for a bound-

Manuscript received October 5, 2011.
†The authors are with Cambridge Research Laboratory,

Toshiba Research Europe.
a) E-mail: atsuto.maki@crl.toshiba.co.uk (Corresponding au-

thor)
This work first appeared in a shortened form in Perbet and
Maki [17].

DOI: 10.1587/trans.E0.??.1

Fig. 1 MCL-superpixels process: overview.Top-left: the input
image. Top-right: the input image and an overlaid graph witha
similarity function (graph edges overlaid). Middle: intermediate
states. Bottom-left: the result, i.e. a set of disjoint trees. Bottom-
right: the borders between those trees showing clusters.

ary between two regions while representing an image as a
graph. A number of recent vision applications compute su-
perpixels as a preprocessing stage in order to reduce the
computational burden during later stages, see [7], [23] for
examples.

An important remaining challenge is, however, to ef-
ficiently generate homogeneous, i.e. uniform in size and
compact, superpixels, which is the goal of this work. Homo-
geneous superpixels are preferred for some vision algorithm
while superpixel representations should be accommodated
to different tasks; see [9], [15] for a few examples. In object
detection and tracking [15], a probability is assigned to each
superpixel to be a part of the full object. Homogeneous su-
perpixels allow us to consider the parts as similar building
blocks and thus to make the assembling step more straight-
forward and accurate. In noise reduction [9], the noise is es-
timated within each superpixel by smoothing the brightness
and extracting the residual, and then reduced by a bilateral

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

filtering whose smoothing power is adapted to the estimates.
Homogeneity of superpixels is essential for consistently es-
timating the noise over the entire image. The nice property
of producing homogeneous superpixels is also discussed in
a few recent articles [8], [10].

In this paper, we present a new and efficient approach
to compute superpixels using Markov random walks on the
graph representation of an image. The use of random walks
in computer vision traces back to the early work on texture
discrimination [24], and more recently the work of [6] moti-
vated it for interactive image segmentation using seed labels.
It was also shown that Normalized Cuts [20] can be viewed
as a process of random walks [12]. Although we also utilise
the stochastic matrix representation, our approach differs in
that we do not perform any spectral analysis of the adja-
cency matrix and mainly exploit the fact that random walks
can capture intrinsic local image structure.

We base our approach on Markov Clustering (MCL)
[21], a general purpose graph clustering algorithm using
stochastic flow circulation. The motivations for using MCL
as a clustering algorithm are primarily in its suitability and
ability to extract local image structure that are expected by
its nature [21] as well as in the previous success in its ap-
plication to video segmentation [16]. See Figure 1 for an
overview (we refer to our approach as MCL-superpixels for
convenience). However, MCL, in its original form, produces
non homogeneous superpixels. See Figure 2 (a) for an ex-
ample. Furthermore, it does not scale well to large images
as it fails to compute the square of the stochastic matrix in
a reasonable time, in spite of using a standard sparse ma-
trix scheme; for a mega-pixel image, the size of this ma-
trix contains 1012 elements. To address these two limita-
tions, we extend MCL with the technique ofcompact prun-
ing, the main idea of which is to enforce the flow circula-
tion to be local, therefore producing more homogeneous su-
perpixels and making the flow computation tractable at the
same time. This results in a newsparse matrix computation
schemewhich is capable of dealing with large matrix sizes
and efficiently runs on parallel computing architectures such
as GPUs.

Hence, the contributions of this paper are (i) a novel
method to generate superpixels using MCL, (ii) a new prun-
ing strategy for MCL calledcompact pruningfor generating
more homogeneous superpixels, and (iii) a newsparse ma-
trix computation schemewhich allows us to lower the com-
putation time and the memory consumption, and to exploit
parallel architectures. We also compare the performance of
our approach with other recent techniques for computing su-
perpixels [3], [13], [18], [22], both in terms of the character-
istics of output superpixels and the computational speed.

2. MCL: the Markov Clustering Algorithm

We first briefly review the Markov Clustering (MCL) algo-
rithm [21]. Given a stochastic graph, the main idea of MCL
is to repeatedly apply two operators on it. The first operator,
calledexpansion, consists of flow circulation which tends to

(a) The original MCL

(b) MCL-superpixels

Fig. 2 A comparison of clustered pixels. (a) The superpixels
generated by the original MCL process are not homogeneous in
size and shape. (b) Extending MCL with our newcompact pruning
results in more homogeneous superpixels.

smooth areas of similar appearance. Intuitively speaking,
the second operator, calledinflation, makes strong edges
stronger and weak edges weaker, serving the dual purpose
of creating cluster boundaries and electing a representative
of each cluster at the same time. After convergence, i.e.
when the graph is stable under those two operators, the re-
sulting graph is a disjoint set of trees, i.e. clusters (see Fig 1
bottom-left).

More precisely, let us define an undirected graphG =
(V,E) with nodesv ∈ V and edgese ∈ E. We denote an edge,
e, spanning two nodes,vα andvβ, aseβα and the value of its
weight asw(eβα), or simplywβα. First,G is transformed to a
Markov graph, i.e. a graph where for all nodes the weights
of out-edges are positive and sum to one. Let us also con-
sider the stochastic matrix (or Markov matrix),

M = (wβα, α, β ∈ [1,N]), (1)

which corresponds to the Markov graph, such that each en-
try is the edge weight,wβα, and N is the total number of
nodes.

The expansionoperator corresponds to the squaring
of M whereas theinflation operator corresponds to taking
the Hadamard power of a matrix (applying power function

PERBET et al.: HOMOGENEOUS SUPERPIXELS FROM MARKOV RANDOM WALKS
3

element-wise) followed by a scaling step, such that the re-
sulting matrix is stochastic again. In sum, given a non-
negative stochastic matrix,M , of a Markov graph,G =

(V,E), the steps can be formulated as

M2 = M2 expansion (2)

M1 = Hp(M2) inflation (3)

Mnew = N(M1) (4)

whereHp(·) andN(·) represent element-wise power opera-
tion with a power coefficient, p, and column-wise normali-
sation, respectively. The steps are repeated while updating
M with Mnew. The process stops when it reaches an equilib-
rium where the difference observed betweenM andMnew is
below a small threshold. At this stage, the resulting graph,
described by the resultant stochastic matrix, appears as a set
of disjoint trees whose union covers the whole graph. Each
tree defines a cluster which can be uniquely represented by
the tree root. Thus, a given node can simply retrieve the
identity of the cluster to which it belongs by tracing the tree
up to its root.

The most important parameter governing the behaviour
of the MCL process is the inflation parameter,p, which in-
fluences the resolution of the output. A large inflation value
produces a large number of smaller clusters and vice versa.
It should be noted that the number of clusters generated by
MCL is emergent (i.e. not set directly). In practice the con-
vergence time of MCL greatly depends on the target reso-
lution of clustering; the coarser the expected clusters are,
the longer the computation. Moreover, the convergence of
MCL is known to be more stable for fine resolution [21]. It
is therefore well suited to the computation of superpixels for
which a fine resolution is typically required.

3. Clustering Image Pixels Using MCL

We interpret an input image,I , with sizenx × ny pixels as
a graphG = (V,E). Each pixel corresponds to a node in
the setV = {v f (i, j) | f (i, j) ∈ [1, nx] × [1, ny]}. Theflat index
function f (i, j) = j ·nx+ i returns a one dimensional index to
the node (i, j). The number of nodes,N, is the total number
of pixels; N = nxny. The set of edges,E = {eβα}, connect
neighbouring nodes, e.g.vα= f (i, j) andvβ= f (m,n).

In order to reflect the image structure in the graph, a
common feature of graph based image analysis is to define a
function that maps a difference in image intensities to edge
weights. Although various weighting functions can be used,
in this paper, the adjacency matrix is initialised using a sim-
ple similarity measure considering an 8-neighbourhood us-
ing a typical function given by:

w
β
α = exp(−µ ‖I [m, n] − I [i, j]‖2), (5)

where I [i, j] = (r, g, b) denotes the intensity of the image
over the available channels. The value ofµ is a free param-
eter (we useµ = 10 in our experiments).

As explained earlier, applying the original MCL pro-
cess to produce superpixels is straightforward but it suffers

Fig. 3 Evolution of flow around each node.The black dot and
the arrows schematically represent the node and the edges (point-
ing their destinations) of the graph, respectively. The evolution of
the MCL process is shown from left to right. Top: During the MCL
process, the edges originating from a given node typically spread
at the beginning (byexpansion) and finally converge at the end.
Bottom: Our new compact pruning strategy bounds the length of
the new edges (generated byexpansion) by the radius (represented
with the red circle) and thereby limits the initial spread due to flow
circulation, achieving faster convergence.

from two limitations:
Non homogeneous pixelsThe shape of the resulting super-
pixels are not homogeneous in size and shape (see Figure
2 (a)). Indeed, MCL does not prevent clusters from notice-
ably varying in size (e.g. from several pixels to hundreds),
nor does it prevent cluster shapes from becoming complex
(not compact).
Slow computation time The bulk of the process of the
MCL algorithm is spent on computing the square of the
stochastic matrix,M2. For large images (e.g. one mega-
pixel) the computation time and memory footprint becomes
very high. As a way to keep the computation tractable,
the standard MCL implementation [21] comes with several
pruning strategies, which aim at approximating the matrix
M by keeping it as sparse as possible. Unfortunately, our
experience shows that these pruning strategies do not per-
form well when dealing with graph representations of im-
ages which are typically sparse but of an extremely large di-
mension. A possible reason is that the simple process of re-
moving the smallest entries of the matrix does not decrease
the cost for computingM2 in a systematic manner and is
therefore not sufficient for certain clustering tasks although
it helps solving a problem with a relatively small scale. For
example, the result in Figure 2 (a) required 58 seconds to
produce around 2000 superpixels on the 300× 225 pixels
image and ran out of memory when using a 1024× 768 pix-
els image as input.

We deal with those two limitations by extending MCL
with a compact pruningmethod as described next.

4. Compact Pruning

We develop a new scheme to allow a better control of super-
pixel homogeneity and guarantee sparsity of the stochastic
matrix that allows a fast computation ofM2. The scheme,
calledcompact pruning, is primarily based on the observa-
tion that for a fine resolution (to generate small clusters),the

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

r = 2 r = 3

r = 4 r = 6

Fig. 4 MCL-Superpixels with different compact pruning.
MCL-superpixels computed with different distance threshold, i.e.
pruning radiusr. The inflation parameter is set top = 1.4. A
greater radiusr produces larger superpixels.

flow does not circulate globally in the whole graph but in-
stead stays nearby a given node. Therefore, one can provide
a reasonable upper bound on the length of the new edges
which are created during the expansion step of the MCL
process. Letr be a simple threshold on the straight-line dis-
tance between the centers of pixels ensuring the following
condition during eachexpansionstep:

‖(m, n) − (i, j)‖ > r ⇒ w f (m,n)
f (i, j) = 0 (6)

Figure 3 shows the concept of using compact pruning where
the initial spread due to flow circulation is limited by inhibit-
ing edges longer than a threshold,r. See Figure 2 (b) for an
example of MCL-superpixels.

Note that this is an approximation whereas the MCL
process comes with a theoretical proof of convergence; a
stochastic matrix, when taken to any power, remains a
stochastic matrix, which means that the elements of each
column sum to one. When this approximation is used, some
entries corresponding to long edges will be missing and the
sum of the elements of a column can then be lower than
one. In practice, however, our modified MCL converges for
all the images of the Berkeley database [11]. This is not
surprising as the original MCL has been shown to be robust
to all types of pruning strategies which manipulate the infla-
tion operator to enforce matrix sparsity [21].

The distance thresholding can be seen as another prun-
ing strategy (hence the namecompact pruning), which ma-

nipulates the inflation operator to enforce matrix sparsity.
Figure 4 demonstrates the effect of changing the compact
pruning radius: the greater it is, the larger are the superpix-
els. In that sense, the distance thresholdr and the inflation
parameterp play an overlapping role: both control the res-
olution of the clusters. We will evaluate the behaviour of
superpixels for different values ofr andp in Section 6.2.

5. Sparse Matrix Computation Scheme

5.1 Node-centric matrix encoding

As stated in Section 3, given a large stochastic matrixM
with dimensions equal to squared image size, a proper strat-
egy for matrix encoding is indispensable in order to keep
the algorithm feasible both in terms of computation time
and memory consumption. For this requirement, we opt
for a node-centric representation which retains the image
as the basic 2D structure of the graph: each node contains
the edges which are departing from it. Consequently, edge
weights are stored in a volumeL whose size isnx × ny × Ne

wherenx×ny is the size of the input image andNe is the num-
ber of edges departing from each node (i.e. pixel). Thanks to
thecompact pruningscheme, the maximum number of non
null edges departing from a given node is known in advance,
allowing us to allocate the volume only once at initialisation.
See Figure 5 for a schematic.

The edge entry,L[i, j; e], starts from the nodevi, j to
point a node at (i, j) + offset[e] where the tableoffset
represents an offset defined by a small precomputed table
containing all the 2D jumps which can be made from a
given node. For example, forr = 1, the table isoffset =
[(0, 0), (−1, 0), (+1, 0), (0,−1), (0,+1)]. Due to the regular
nature of an image graph, a unique table is shared by all the
nodes instead of computing it specifically for each node.

5.2 Sparse matrix multiplication scheme

A notable benefit of this new matrix encoding is that it sub-
stantially facilitates the square computation of the stochastic
matrix,M . Each element ofM2 = M2 in its original form is
given by:

w
′β
α =

N
∑

γ=1

w
γ
αw
β
γ. (7)

Let us review the meaning of (7) from a graph point of view.
The weight,wβα, of an edge,eβα, is replaced by the sum of
the products of weights on all the 2-paths (i.e. 2 consecu-
tive edges) linking the nodevα andvβ via a third node,vγ.
Retrieving those 2-paths at computation time would be very
expensive. Instead, the new encodingL allows us to quickly
determine which edges depart fromvi, j.

We introduce a more effective alternative by pre-
computing all those 2-paths. This pre-computing would be
too memory expensive in an irregular graph because each
node would need its own set of 2-paths. Fortunately, the

PERBET et al.: HOMOGENEOUS SUPERPIXELS FROM MARKOV RANDOM WALKS
5

Fig. 5 Node-centric matrix encoding. Left: The weights of all
the 1-path edges starting from a pixel are stored in a table (the
distance threshold is set tor = 2.5 in this figure). Right: Edge
weights in the entire graphG are stored in a volume.

regular nature of an image graph allows us to factorise those
sets into a single look-up-table. During the computation of
M2 with the new matrix encoding, the weights on edges in-
dexed bye ∈ [0,Ne−1] (note the use of zero-based indexing)
need be updated for each nodevi, j . Thee-th edge starts from
vi, j and arrives atvm,n where (m, n) = (i, j) + offset[e]. In
this context, a 2-path connecting (i, j)→ (s, t)→ (m, n) can
be described using the indices [efirst, esecond] where

(s, t) = (i, j) + offset[efirst], (8)

(m, n) = (s, t) + offset[esecond]. (9)

Therefore, we can precompute a look-up-table which en-
codes 2-paths by two indices,efirst andesecond, for each
e ∈ [0,Ne−1] (see Figure 6). We denote the table asdetour
since it represents 2-paths via a third node.

The pseudo code of the algorithm below clarifies the
process that each element ofL is systematically updated in
Lnew:

f unctioncomputeFlow(L,Lnew)
. f or// (i, j) ∈ [0, nx−1]×[0, ny−1] # parallel execution
. . f or e ∈ [0,Ne− 1]
. . . (m, n) = (i, j) + offset[e]
. . . w

m,n
i, j = 0

. . . f or (efirst, esecond) ∈ detour[e]

. . . . (s, t) = (i, j) + offset[efirst]

. . . . w
s,t
i, j = L[i, j; efirst]

. . . . w
m,n
s,t = L[s, t; esecond]

. . . . w
m,n
i, j + = w

s,t
i, j · w

m,n
s,t

. . . Lnew[i, j; e] = w
m,n
i, j

5.3 Computational complexity analysis

The computational complexity of our algorithm isNr4

whereN is the number of pixels andr the pruning radius.
The termr4 comes from the fact that for a given nodes,
the set of detours are all the non repetitive choices of 2
neighbours within the neighbourhood, that is,

(

k2

2

)

, which is

asymptotically equivalent tor4. Another important factor is
the inflation parameter which influences the number of iter-
ations required to converge. The influence of inflation is not
shown in the complexity and hidden in the constant: in prac-

efirst

esecond

offset[e]=(1,1)

Nodes (pixels)

Vi,j

Vs,t Vm,n

Fig. 6 Precomputation of 2-paths. Nodes (pixels) are shown
in blue dots. Left: The tableoffset is indexed (with zero-
based indexing) bye ∈ [0,Ne − 1] and contains the 2D jumps
offset[e] = (ox,oy) allowing to jump from a given nodevi, j
to its neighbourvm,n with (m,n) = (i, j)+ offset[e]. In this
case,offset=[(0,0), (1,0), (1,1), (0, 1), (−1,1), (−1,0), (−1,−1),
(0,−1), (1,−1)] (in red). Right: For a given edge indexed bye,
the tabledetour[e] contains the indices (efirst, esecond) allow-
ing to jump fromvi, j to vm,n via vs,t with the paths in (8) and (9).
For example, the red edge is indexed bye = offset[2] = (1,1).
The corresponding 2-paths aredetour[2] = [(1,3), (3, 1), (0,2),
(2,0)].

tice, it can slow down the process by a factor of three. This
complexity analysis shows one weakness of our algorithm:
it will not perform well for a large radiusr. As a conse-
quence, it means that generating superpixels with large area
will perform poorly. In practice we found that MCL per-
forms well when generating superpixels with an area of less
than 150 pixels.

Note that the complexity of the naive original MCL is
N3. Nevertheless, using some optimisation techniques such
as keeping the graph sparse, this complexity becomesNk2

wherek is the maximum number of edges per node; in our
case,k = r2, which leads to the same expression ofNr4.
This fact leads to an interesting discussion about the reason
why our method offers such a significant speed up over the
original MCL. The complexity of the original MCL algo-
rithm is governed by the cost of a matrix-matrix multiplica-
tion. This operation can be implemented in parallel if using
a full storage of the adjacency matrix but as stated before,
doing so would be infeasible for a large graph. The original
MCL algorithm resorts to traditional sparse matrix represen-
tations: while gaining a big performance improvement on a
single thread, those schemes typically do not map well to
highly parallel architectures. By adopting our new sparse
matrix representation which naturally maps well to highly
parallel architectures, we keep the best of both worlds and
achieve similar results up to one hundred times faster.

5.4 GPU implementation

The algorithm to computeM2 using node-centric matrix en-
coding maps well to parallel architectures like GPUs by run-
ning a single thread per pixel. Computing the inflation is
also straightforward, one thread per pixel. We have there-
fore implemented the entire MCL process on a GPU. On

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

small images, we observed a 10-fold speedup (on larger im-
ages, the original MCL runs out of memory).

We implemented our algorithm using Cuda on a GPU
NVIDIA Quadro Fx 4600 using single precision floating
point (345 GFLOPs). The original MCL runs on the CPU,
an 8-cores 2.3 GHz computer with 3.25 GB of RAM.

6. Performance Evaluation

We evaluate the MCL-superpixels through qualitative com-
parison with four other existing methods which we refer to
as: NCuts (the Normalized Cuts) [18], Quick shift [22], Lat-
tice [13] and Graph-based [3]. We employ the Berkeley
database [11] and use all 300 images in the experiments.
See Figure 8 for the quality of superpixels for a few exam-
ple images; ‘Tiger’ image (part of the original, 133× 100
pixels) and ‘Starfish’ image (481× 321 pixels).

Our comparison focuses on the generation of a large
quantity of small superpixels; therefore we keep the number
of clusters resulting from each method similar. In this eval-
uation, we compute the MCL-superpixels using the MCL
inflation parameter,p = 1.4, and the distance threshold for
compact pruning,r = 4.5. For the evaluation we average the
measures across all images in the database.

6.1 Evaluation criteria

As the evaluation criteria of homogeneity, we study the
variance of areas and compactness. Using ground truth
annotations provided with the database, we also examine
the undersegmentation error and boundary recall as met-
rics of superpixels. We commonly denote superpixels as
sj , j = 1, ...,K and their areas in number of pixels asA(sj),
respectively.

Variance of Area One measure of homogeneity of super-
pixels is in terms of the area since the size of superpixels
is an important factor. We computeAreas, the average of
A(sj), andVoA, thevarianceof A(sj) normalized byAreas
as a measure of size.
CompactnessWe evaluate the compactness of superpixels
in terms of theisoperimetric quotient, Q j , based on their
shapes,

Q j =
4πA(sj)

L2(sj)
(10)

whereL(sj) is the perimeter ofsj . Notice that, 0≤ Q j ≤ 1.
The closer the shape ofsj is to a circle, the higherQ j is. We
computeQ = (1/K)

∑K
j=1 Q j for each image.

Undersegmentation Error We compute a quantifiedun-
dersegmentation errorwhich measures the total amount of
leaking caused by superpixels against overlapping ground
truth segment. That is,

E =
[
∑

sj |sj∩tk,∅ A(sj)] − A(tk)

A(tk)
(11)

wheret1, ..., tK are ground truth segments. We compute the

Time[s] VoA Q E recall1
MCL-superpixels: 21.45 0.33 0.81 0.46 0.79
NCuts [18]: 231.5 0.13 0.83 0.46 0.74
Quick shift [22]: 2.556 0.82 0.63 0.52 0.85
Lattice [13]: 0.537 0.93 0.57 0.50 0.81
Graph-based [5]: 0.232 2.75 0.49 0.47 0.93

Table 1 Evaluation of different approaches. The results are
averaged for all the images of Berkeley database [11]. The average
area of superpixels is 100 pixels. See Section 6.1 for the evaluation
criteria. Note that MCL-superpixels achieve similar performance
to NCuts but with a higher speed.

average of the measures in (11) across alltk, k = 1, ...,K.
Boundary Recall We also employ standard boundary recall
which is defined by the fraction of the ground truth edges
that falls within a small distance threshold from at least one
superpixel boundary. We set the threshold strictly to 1 pixel
in our experiments and call itrecall1.

Note that both, undersegmentation error and boundary
recall, are somewhat subjective due to the manually anno-
tated boundaries that serve as ground truth.

6.2 Evaluations

Table 1 shows our study on the performance of different ap-
proaches. Figure 8 demonstrates the quality of generated
superpixels. Although Quick shift, Lattice and Graph-based
are considerably faster, these methods are less suitable to
produce small and homogeneous superpixels. They also re-
sult in high values of variance of areaVoA and low com-
pactnessQ.

NCuts produces apparently similar superpixels to
MCL-superpixels. One difference is that NCuts superpixels
appear to better follow linear colour boundaries at the cost
of generating long and thin superpixels in some parts. Fig-
ure 7 shows a zoomed-in view of the results for the ‘starfish’
image by NCuts and MCL-superpixels; it can be observed
that MCL-superpixels are generated more faithfully to lo-
cal edges although NCuts achieves a slightly better overall
score of compactnessQ. We also tested our algorithm and
NCuts on a larger image of size 1024× 768 pixel; our algo-
rithm completed in a minute and NCuts could not complete

NCuts MCL-superpixels

Fig. 7 Zoomed-in views. Superpixels computed in a part of
‘Starfish’ image is shown. Left: NCuts. Right: MCL-superpixels
(proposed). Regular superpixels are generated by both methods,
but boundaries of MCL-superpixels are faithfully aligned to local
edges.

PERBET et al.: HOMOGENEOUS SUPERPIXELS FROM MARKOV RANDOM WALKS
7

Fig. 8 Superpixels by different approaches. Two examples are shown (‘Tiger’ and
‘Starfish’). From top-left to bottom-right: Input image, MCL-superpixels (proposed),
NCuts, Quick shift, Lattice, and Graph-based. Note that thesize and shape characteristics of
superpixels are different from one another. MCL-superpixels and NCuts generaterelatively
regular superpixels.

due to an out of memory error caused in dealing with large
matrices for the spectral analysis.

One of the evaluation criteria based on the ground truth
is the undersegmentation error,E. MCL-superpixels and
NCuts both achieve the lowest value ofE among the five
methods. Intuitively, the compact nature of superpixels
helps to avoid strong boundary bleeding and can decrease
the error, which explains why the other three methods result
in slightly larger errors.

Graph-based superpixels and Quickshift on the other
hand score higher boundary recallrecall1 than Lattice,

MCL-superpixels or NCuts, which all take on certain regu-
larities. This reflects the fact that the ground truth segments
are not necessarily compact and the two methods perform
well capturing non-compact regions as superpixels while
trading off the score of compactness.

Although we have used fixed values for distance
threshold (the pruning radius),r, and the inflation param-
eter,p, for fair comparisons, as discussed in Section 4, both
of the two parameters play the role of controlling the reso-
lution of superpixels. Figure 9 shows the behaviour of su-
perpixels obtained with various values ofr and p. Again,

8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Fig. 9 Characteristics of MCL-superpixels with different parameter settings. The
pruning radius,r, and the inflation parameter,p, are being changed. From left to right,
plotted are variance of areas, compactness, undersegmentation error and boundary recalls.
The results are averaged for all the images of Berkeley database [11].

Fig. 10 Mosaic images generated by different superpixels. From top-left to bottom-
right: Input image, MCL-superpixels (proposed), NCuts, Quick shift, Lattice, and Graph-
based. Notice the difference in quality for example at the crosses and the region ofred
dome.

the shown results are the averages for all the images of the
Berkeley database [11]. While it is possible to usep as well
asr for changing the size of clusters, the influence in terms
of the subjective evaluations are observed to be similar. The
homogeneity appears to be generally higher for the smaller
value of p. Ideally, those two parameters should be refor-
mulated so that one controls the size of the superpixels and
the other their homogeneity; this is left for future work.

Superpixels are also useful for an approximate image
representation by replacing values of pixels,I [i, j], for ex-
ample with the mean intensity within a superpixel. Figure
10 shows an example of such a representation according to
superpixels generated by different methods. In comparison
to the original image (top-left), some artifacts due to this
approximation are observed in all the five cases. However,
MCL-superpixels qualitatively show the best reconstruction
of the original. This is clearly visible in the areas of the
red dome and the edges of the building. Note that the cross
is significantly better reconstructed using MCL-superpixels
than NCuts.

In sum, MCL-superpixels achieve desirable properties,
a high score of compactness,Q, and relatively low variance
of area,VoA, while keeping a low undersegmentation er-
ror, E, at a speed that is ten times faster when compared to
NCuts (for which no parallel implementation is available).

7. Conclusion

We have presented a novel method to generate superpixels
using the MCL process, which improves the generation of
superpixels in four ways. First, it makes the shape of super-
pixels more homogeneous by keeping the flow local. Sec-
ond, the computation is faster due to a sparser stochastic ma-
trix representation. Third, the memory consumption is lower
(for the same reason). Fourth, it is easily amenable to a par-
allel implementation due to a static graph topology. The key
advance is that we exploited the nature of random walks that
can capture intrinsic local image structure while introducing
the strategies ofcompact pruningandsparse matrix multi-
plicationscheme.

PERBET et al.: HOMOGENEOUS SUPERPIXELS FROM MARKOV RANDOM WALKS
9

An important aspect for further study is the stability of
superpixels across video frames between which small image
variations are exhibited. Also, interesting future work will
include a comparison of our method to Entropy rate super-
pixels [10] which was introduced after the original publica-
tion of this work [17]. In summary, we have demonstrated
the performance of our algorithm in comparison with other
relevant techniques, and shown that its capability in generat-
ing similarly homogeneous superpixels to those by Normal-
ized Cuts but by a faster computation – a feature unique to
MCL-superpixels.

Acknowledgment The authors wish to thank Dr. Oliver
Woodford and Professor Roberto Cipolla for valuable dis-
cussions.

References

[1] Y. Cheng. Mean shift, mode seeking, and clustering.IEEE-PAMI,
17(8):790–799, 1995.

[2] D. Comaniciu and P. Meer. Mean shift: A robust approach toward
feature space analysis.IEEE-PAMI, 24(5):603–619, 2002.

[3] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based
image segmentation.IJCV, 59(2):167–181, 2004.

[4] K. Fukunaga and L. Hostetler. The estimation of the gradient of a
density function, with applications in pattern recognition. Informa-
tion Theory, IEEE Transactions on, 21(1):32–40, 1975.

[5] B. Fulkerson, A. Vedaldi, and S. Soatto. Class segmentation and
object localization with superpixel neighborhoods. InICCV, pages
670–677, 2009.

[6] L. Grady. Random walks for image segmentation.IEEE-PAMI,
28(11):1768–1783, 2006.

[7] D. Hoiem, A. Efros, and M. Hebert. Automatic photo pop-up. ACM
Trans. Graph., 24(3):577–584, 2005.

[8] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S.J. Dickin-
son, and K. Siddiqi. Turbopixels: Fast superpixels using geometric
flows. IEEE-PAMI, 31(12):2290–2297, 2009.

[9] C. Liu, W. T. Freeman, R. Szeliski and S. B. Kang. Noise Estimation
from a Single Image. InCVPR, pages 901–908, 2006.

[10] M.-Y. Liu, O. Tuzel, S. Ramalingam and R. Chellappa. Entropy Rate
Superpixel Segmentation. InCVPR, pages 2097–2104, 2011.

[11] D.R. Martin, C. Fowlkes, D. Tal and J. Malik. A Database of Human
Segmented Natural Images and its Application to EvaluatingSeg-
mentation Algorithms and Measuring Ecological Statistics. Tech.
report, 2001.

[12] M. Meila and J. Shi. Learning segmentation by random walks. In
NIPS, pages 873–879, 2000.

[13] A. P. Moore, S. Prince, J. Warrell, U. Mohammed, and G. Jones.
Superpixel lattices. InCVPR, pages 1–8, 2008.

[14] G. Mori. Guiding model search using segmentation. InICCV, pages
1417–1423, 2005.

[15] G. Mori, X. Ren, A. Efros and J. Malik. Recovering Human
Body Configurations: Combining Segmentation and Recognition.
In CVPR, pages 326-333, 2004.

[16] F. Perbet, B. Stenger and A. Maki. Random Forest Clustering and
Application to Video Segmentation. InBMVC, pages 100.1-100.10,
2009.

[17] F. Perbet and A. Maki. Homogeneous Superpixels from Random
Walks. InIAPR MVA, pages 26–30, 2011.

[18] X. Ren and J. Malik. Learning a classification model for segmenta-
tion. In ICCV, pages 10–17, 2003.

[19] Y. Sheikh, E. A. Khan, and T. Kanade. Mode-seeking by medoid-
shifts. InICCV, pages 1–8, 2007.

[20] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE-
PAMI, 22(8):888–905, 2000.

[21] S. van Dongen.Graph Clustering by Flow Simulation. PhD thesis,
University of Utrecht, 2000.

[22] A. Vedaldi and S. Soatto. Quick shift and kernel methodsfor mode
seeking. InECCV, pages 705–718, 2008.

[23] A. Vazquez-Reinai. S. Avidan, H. Pfister and E. Miller. Multiple
Hypothesis Video Segmentation from Superpixel Flows. InECCV,
pages 268–281, 2010.

[24] H. Wechsler and M. Kidode. A random walk procedure for texture
discrimination.IEEE-PAMI, 1(3):272–280, 1979.

