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Abstract

This paper introduces an algorithm for detecting walking
motion using point trajectories in video sequences. Given
a number of point trajectories, we identify those which are
spatio-temporally correlated as arising from feet in walk-
ing motion. Unlike existing techniques we do not assume
clean point tracks but instead propose “probabilistic tra-
jectories” as new features to classify. These are extracted
from directed acyclic graphs whose edges represent tem-

poral point correspondences and are weighted with their _. . . . . . .

. I . Figure 1.Space-time volume with point trajectories. Brighter
ma_tchlng probab_lhty in terms of appearance _and Iocguon. green indicates corner positions more recent in tirheft: Two
This representation tolerates the inherent trajectory &mb  gample trajectories of corners on the feet are highlight@ight:
guity, for example due to occlusions. We then learn the another case where features are swapped during the sholt-occ
correlation between the movement of two feet using a ran-sion. Our method is able to correctly classify both cases al&w
dom forest classifier. The effectiveness of the algorithm ising motion.
demonstrated in experiments on image sequences captured
with a static camera.

plify image analysis [8] or are acquired from motion cap-
tured data [22] in place of MLDs. There has been relatively
. little work on recognition purely from low-level features-e
1. Introduction tracted from natural image sequences [24]. Obtaining accu-
Trajectories of points in image sequences provide a'até point tracks is difficultin many cases due to effectdisuc
strong visual cue, often allowing the human brain to in- @s occlusions, lighting changes and image noise [1].
terpret the scene. Point motion not only gives strong cues In this application, in order to obtain a discriminative-tra
about the underlying geometry, but may also be character-jectory, a corner should ideally be tracked during a coneplet
istic for an object class. For example, when points close towalk cycle (about one second). Deterministic point traject
the joints of a walking person are tracked, the psycholdgica ries of typical outdoor scenes are rarely reliable over such
effect ofkinetic depthallows us to perceive walking motion long period of time. This paper does not assume clean point
solely from the 2D point motion pattern. This has first been tracks, but retains the concept of temporal connectediyess b
studied by Johansson using moving light displays (MLDs) introducing the notion oprobabilistic trajectories These
[18]. The goal in this paper is to achieve this recognition are sampled from a directed acyclic graph whose edges rep-
ability for detecting pedestrian motion from tracked psint resent temporal point correspondences weighted by their
on a pair of feet whose trajectories are characteristic andmatching probability in terms of appearance and location.
spatio-temporally correlated. See Figure 1 for an example Temporal correspondence is thus hypothesized while sacri-
of such trajectories. ficing matching accuracy in order to obtain longer and more
The biological phenomenon has inspired a lot of work discriminative trajectories.
in the area of motion-based recognition, for example hu-  The key idea for walk detection from trajectories is to
man gait analysis [9, 13]. These methods typically require detectcorrelated spatio-temporal feature$hat is, we de-
a robust method for feature extraction. Thus, trajectamfes tect pedestrian motion by observing the correlation betwee
interest points are either obtained by using markers to sim-the motion of two feet of the same person. Recent related
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Figure 2.Schematic of the algorithm. Given a video sequence and 2D corners detected in each framéyst sample probabilistic
trajectories of corners in the graph, and then classify tiagettories by a two-stage random decision forest. We desigrelated spatio-
temporal features for classification.

work by Brostow and Cipolla includes a method for crowd  The contributions of the paper are thus three-fold: (i)
tracking in which coherent trajectories are found to idgnti  the introduction ofprobabilistic trajectorieswhich tempo-
those originating from the same individual [5]. A spatio- rally associate each point over a sufficiently long time pe-
temporal volume has been proposed for action recognitionriod under both image noise and occlusion, (ii) the pairwise
by Yilmaz and Shah [27], however it is assumed the object analysis of trajectories for detecting characteristicelar
silhouettes to be available. Mikolajczyk and Uemura detect tion between the two feet in walking motion, and (iii) the
features with different detectors and track them with a KLT design of efficient features which are computed in the two-
tracker [23]. After a motion compensation step actions are staged randomized decision forest classifier. Figure 2 show
recognized using a vocabulary tree. Other related work isa schematic of our algorithm.

that by Laptev and Lindeberg who used space-time interest The assumptions are that the camera captures dynamics

ints[20]. . . .
points| ,O] ) of motion at sufficiently high rate (we use 60 fps) and that
In this paper we choose to use comner features in ordereqnje walk with approximately constant speed and direc-
to continue detecting points when they are stationary durin 4, during a gait cycle. We also assume a stationary cam-

the walk cycle. Note that physical models of bipedal motion ¢4 i this paper, but discuss the extensions for the case of a
have recently been used in tracking a walking person [7]. moving camera.

We aim to directly learn to detect this type of foot motion in

a discriminative manner, while ignoring arm motion which

typically exhibits more variation. A further advantage of

detecting points on the feet is that their 2D location in the 2. Probabilistic Trajectories

image can directly be mapped to 3D distance given a cali-

brated camera. This is especially useful in surveillanee ap  This work uses point trajectories as features for detect-

plications using monocular pedestrian detection [12]. ing motion of pedestrians. Since repeated detection of the
We train a classifier for pedestrian motion of a pair of same point over a long time interval is not always possi-

feet among a number of point trajectories. Intuitively, the ble, we introduce the notion gobabilistic trajectory The

motion of a point on a single foot is composed of two peri- basic idea is to hypothesize trajectories by enforcing temp

ods of dynamic and static phases [2] and motion of points ral correspondences between consecutive frames. In prac-

from a pair of feet are alternating in a cyclic manner. In tice, corners of two consecutive frames are connected prob-

this work we opt for a learning based approach and employabilistically using their spatial distance and their appea

a random forest classifier [4, 14] which has been success-ance. Overl' frames, those connections form a graph of

fully applied to different classification tasks [6, 21, 26)2 possible trajectories. A walk in this graph describes a pos-

It is also well suited to our probabilistic input. That is, we sible trajectory of a given corner over time, also including

use sampled subgraphs of probabilistic trajectories aginp many incorrect trajectories. Our assumption is that most of

data. We build a two-stage decision forest classifier. Thethese will still be discriminative, see Figure 1, right. Bro

first stage identifies candidate foot trajectories and tlse se abilistic trajectories are generated in three successiEss

ond stage associates candidate points as pairs. as described below.
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Figure 3.Probabilistic Trajectories Left: A sketch of a graph is high, resulting in a nearly deterministic graph travelisa

and selected probabilistic trajectories as our motion dggor.

Right: An example of partial graph with varying color represent-

ing different probabilities, i.e. brighter indicates highvalues. backward forI" frames, see Figure 3. The gragh(V, E)

consists of nodesy, which represent matched corners in

the precedindl’ frames, and edgedy, connecting these

nodes. NamelyE = (E;;(7),7 = t,...t — T + 1). An
In every frame we extract Harris corners [15] and find edge representing an active matéh; (t), hasP;;(t) as its

potential ancestors for each point among the feature sefassociated weight.

2.1. Matching Between Two Consecutive Frames

. - . h .
from the previous frame. Let;(t),i = 127 .., n be thei’ Note that the number of frameg, for which each cor-
corner detected ata 2D Ioca'tgm(t) € R7attimetandlet  per can be traced back (until encountering an inactive edge
pj(t =1),j = 1,...,m be thej"" corner found ak; (¢ — 1) or a ‘dead end’) is available for each node. For example,

amongm corners which were within a certain range from d[E;;(t)] = 1if p,(t — 1) has no ancestor anfd;,(t — 1) =
x;(t) in framet — 1. We then define the temporal matching  tor il & (wherek is an index to features in framie- 2).
score,P; (1), thatp; (t) matcheg; (¢ — 1) in terms of their  \ye assigni to each node as its attribute while idealy 7

appearance similarity;;, and the spatial distande;;, by where at least one path can be found containing nodes from
theT previous frames.
Py (pi(t), p;(t — 1))  exp(—aSy;) exp(=BDy) , (1) b
wherea andf3 are positive weighting coefficients. 2.3. Sampling Probabilistic Trajectories
The appearance similarity;; is computed from the lo- ) ) ) )
cal image regions around(t) andp;(t — 1), respectively, In each time step the graphis updated and trajectories are

intensity of each image patch) ari}; by their spatial dis-  Pled trajectories need to be long and physically plausible.
tanceD;; = ||xi(t) — x;(t — 1)]. Now, we define th@robabilistic trajectories X; () € R*"

We represent the existence of a potential match betweerPf pi(t), as the paths connecting the root node to different
p;(t) andp; (¢t —1) as a binary valueiz,; (¢) € {0, 1}, based leaf nodes ofj; (N, E). In practice, a graph traversal 6f

on P;;(t) and define the match as activé,; (¢) = 1, with guided by a probabilistic selection of edges at each node re-
the condition: sults in plausible trajectories. In particular, we use ti@s
P >max P —e, ) pling probability, P;;, in which we also take into consid-

eration the traceable depthand the velocity conservation

where the threshold valueis dynamically adjusted so that factor,V;;:
the number of pairs is constant (4n). Note that this may

result in no active matches for some corners with low values ~ ~

of max; P,;. We also add temporal matches for the same set’ (pi(t), p; (t=1)) o< Pij exp <_ d[E; -]+1> exp(—0Vij)
of consecutive frames in the forward direction by repeating 3)
the process in a reverse manner. where~ and are positive weighting coefficients, and the

last factor
2.2. Acyclic Graph with Matching Probabilities

For each time steg we have determined temporal  Vij(7) = [[(xn(7+1) =xi(7)) — (xi(7) —x; (7= 1))|| (4)
matchesE;;(t) between corners across previous adjacent
frames. We retain these for the I8Btframes (the choice s valid whenr < t (so that the coordinate of the previous
of T will be discussed later). Defining each pojintt) as a node in the pathx,, (7 + 1), is available). We set = 10
root node, we generate an acyclic gra@i,V, F), of depth andé = 1 in our experiments. See Fig. 4 for the influence
T by tracing active temporal matches along the time axis of 4.



3. Classification by Random Decision Forest

Given a cornerp;(t), and its probabilistic trajectory,
X;(t), our task is now to determine whether or do{(t) is
the trajectory of a foot during walking motion. In order fora
trajectory to contain discriminative features, we consitse
lengthT" as roughly covering one walk cycle. As mentioned
above, the key idea is to observe point trajectories in pairs
That is, we also consider, (t)(u # i) that are located in

(b)
the neighborhood of; () and examine the spatio-temporal Figure 5.Features from Trajectories. (a)in order to compute

correlation between the probabilistic trajectori&s(t) and ~ features we sample many pairs of velocity vectors from @raj
X, (t). In order to avoid examining the large number of tory. (b) _The.prlnmpal directior¢ of Fhe trajectoryX;(t) is used
possible pairs we also use the fact that some trajectories ca 1" the directional feature computation.

be rejected immediately as candidates, such as those from . ) ) ) )

stationary background points or those that are too noisy due19ure 5(&). This operation of cutting a trajectory at four
to incorrect temporal association. Thus, we employ a two- points is motivated by the observation that four dynamical

stage classification process:

1. Selection of candidate trajectories.
2. Pairwise classification of pertinent trajectories.

We perform classification using random decision forests in
both stages.

3.1. Selection of Candidate Trajectories

models per gait cycle is a reasonable choice in a probabilis-
tic decomposition human gait [3] where coherent motion is

used as low-level primitives. We then define our features,

fs and f4, by the distance and the inner product of scaled

versions of the two vectors:

fs
fa

9)
(10)

laovo — a1 vi]|,

(bovo, b1v1),

The feature design for the first stage is based on the ob-Wherea; andb;,i = 0,1 are random coefficients i, 1).

servation thatX;(¢) originating from a foot is characterized
by dynamic and static phases, being distinguishable from
simple trajectories coming from background.

Feature Vectors Let a trajectory,X;(t), be represented by
avectorX;(t) = [x(t),x(t — 1),...x(t =T +1)]T. We
first remove its linear component;;(¢), and convert\; (t)
to its canonical formX;(t) = [x(t),%(t — 1), ..., x(t — T+
1)]T. The canonical formX;(t), of a trajectoryX;(t), is
computed as

(1) = Xi(t) — Xi(t)

i )
[%(t),...,%x(t—T+1)]" and

whereX; (t

1 [(t—7) x(t—T+1) + (t—t+T—1) x(t)]. (6)
The merit of using the canonical fornX;(t), is that it
represents the motion characteristics independent af-ts |

cation.

We generate two feature vectors froin(t), v andvy
as the velocity term. By randomly choosing four time in-
stances as cutting pointg,(¢c = 0,...,3;t. < tet1), We
extract

Vo i(fl) — )2(150), (7)

)Z(tg) — )Z(tg). (8)

Namely, we sample two random velocitiegy, and v,
along a trajectory by choosing two points per velocity, see

Vi

Different featuresf; and f; are generated by sampling
values for the coefficients; andb;, as well as the cutting
points,t.(c = 0, ..., 3), of the trajectory.

Selection of Trajectories We classify candidate trajecto-
ries with a random forest [4, 14] which is an ensemble of
I decision trees. Each tree examines all input trajectories,
X,(t). Given an input trajectory at the root node, each
decision tree recursively branches left or right down to the
leaf nodes according to the feature resporfseand f; in
(10), of a learned function at each non-leaf node. At the leaf
nodes, we obtain the class distributions of foot/non-foot.
The output fromF' randomized decision trees is averaged
to select candidate trajectories.

Learning Using Random Samples We obtain training
data by manually annotating points corresponding to foot
regions in a video, and then extracting probabilistic taje
tories, X;(¢) of lengthT', as random subgraphs which stem
from the annotated corners. Training is performed sepa-
rately for each tree using a random subset of the training
data.

We recursively split the training data at each node, us-
ing the standard method involving information gain [26].
At each leaf node, the class distribution of foot/non-feot i
computed from the number of instances that reach the node.

We annotate the ground truth data of feet with a tag of
left/right foot so that they can be directly used for tramin



the decision forest in the second stage. It should be notec ™"
that those points that can be associated with both feet areE

also annotated with equal probabilities of being on leftiti
foot. See Figure 6 for an example of ground truth labels.

3.2. Pairwise Classification of Walking Motion

Given that a cornep;(t) is selected as a candidate
point in the first stage, we pick thoge (¢)(u # i) which
are located in the neighborhood of(¢) and examine
how their probabilistic trajectoriesy;(¢) and X, (t), are
spatio-temporally correlated.

Figure 6.Ground truth labels: Corners detected inside the cir-

) . . . cles are annotated as being on a foot.
Features for Directional Correlation Although the trajec-

tory, X;(t), is three-dimensional, when walking in a straight
line, the trajectory lies approximately in a 2D plane. If a
?et of two candld_ate trajectorieX; (¢) ar_1d Xu(t), arises Yilt) = F(t),5(t — 1), .. 5t — T +2)]T. (14)
rom walking motion of two feet, the orientations of their

2D planes in 3D space should be close to each other [16].  Rather than simply taking the inner product of the entire
Based on this observation, we compute the covariance may;, () andY,, (t), which would result in a scalar, we compute
trices,C;, of x(7),7 = ¢,....,t — T + 1, and the eigenvec-  their piecewise dot products. By cutting each¥oft) and
tor, &, € R?, corresponding to the greatest eigenvalue so Y, () into [ pieces at common fixed cutting points(c =
that¢; represents the principal direction &f;(¢) along its 0,...,0 = 2;tc > teq1), We acquire a vector

2D plane, see Figure 5(b). Analogouslyis computed for 5 5 5 5

Xu(t) a= [<Y;/(t)a Yé(t»v ) <Y;I(tl—2)a Y;(tl—2)>]—r € Rl’

We expect; and¢, to be approximately parallel, their y y (15)
directions should be both close to the walking directiorr. Fo whereY/ (t.) represents a portion df; (¢) starting at.. We
most of the gait cycle the vector vector connecting the two then define a phase featufgas the inner product ef with
front points on the trajectory;,, (t) = x;(t) — x,(t) can be arandom vectory € R! where||)|| = 1:
used as an approximation for this direction. We compute a

Thus, the rectified velocity vector is

feature vector containing inner produatss R?, o = (,a). (16)
(&, €4l We choose to usé = 5, again assuming that the four dy-
c=| |l{&, xi ()] (11) namical models per gait are well covered in the trajectories

16w, i (£))

Final Detector Output The output from the second de-
and a random vectaef € R?, ||¢| = 1, so that P P

cision forest consists of a set of hundreds of feature pairs

fo = (¢,c). (12) along wiFh their_probabilities of being a pair of feet (see
bottom-rightin Figure 7 for an example). In order to extract

Features for Walking Phase Correlation We also design @ single pair from this set, we run mean-shift clustering and

a feature based on the fact that trajectories from a pair oftake the average of the most probable cluster as the final

feet are out of phase with each other, alternating in a cyclic estimate.

manner with dynamic and static phases. This means that

one foot is mainly in the dynamic phase while the otheris in 4. EXperiments

the static phase. Since one has nearly zero velocity during

most of the cycle, we can expect the dot product of their

velocity vectors, after proper rectification, to be alsoselo

to zero. For this purpose we consider the trajectany),

in terms of velocity by generating a vector

We captured video sequences (resolutid®0 x 720 pix-
els at 60 fps) in which a person walks in seven different di-
rections as well as other sequences including different per
sons walking at different speed.
Figure 7 illustrates the performance of the proposed clas-
Yi(t) = [y(t), y(t—1),....y(t—T+2)]" € R*T-1 (13) sification on a sequence of 350 frames. The selected candi-
dates of the first stage and the classified pairs in the second
wherey(7) = x(7) — x(t = 1),7 = t,....t = T + 2. We stage are shown in green, in the top and the middle rows,
convert eacly(7) to y(7) by projecting it to the axis of;. respectively. Although there are some connections between



Figure 10.Estimation error: Average distances between detected
and annotated pairs plotted for each frame. Peaks in the lyrap
correspond to missed detections of feet.

=

Figure 11.Static and moving camera. Point trajectories in the
case of a stationary camera (left) and a moving camera (Jight

corners for example on arms as their motion is similar to
feet, the connections between feet are generally dominanting correlation of point trajectories.
and the final detection results are shown in red in the bottom  The strategy in this paper was to retain the uncertainty

row. The algorithm currently runs at 2-5 frames per second.n the track associations and let the classifier handle this
Figure 8 shows an example sequence of 500 framesuncertainty. However, better methods for associationctoul
where outliers become more dominant and the final detec-result in less ambiguous trajectories and thus allow the fea
tion is no longer at the foot location. Although pairs are tures to be more discriminative. One solution could be to
detected on the feet (left), a number of pairs remain candi-generate shorter but reliable ‘tracklets’ and to link them i
dates as the result of classification stages. Outliersdeclu an additional step [17].
pairs of points on the arms as well as pairs between the body  Future work will also focus on the case of a moving cam-
and the background. era. Figure 11 shows trajectories for the cases with both
Figure 9 shows detection in a 400-frame sequence of twostationary and moving camera. In the case of a station-
pedestrians crossing the scene. During the crossing phasgry camera (left), trajectories connecting background cor
only one pair of feet is detected, but subsequently both areners are vertically aligned. On the other hand, trajecsorie
detected again correctly. viewed by a moving camera (right) exhibit more variation.
For an outdoor sequence with one pedestrian of 595For sufficiently smooth camera motion it seems that the tra-
frames, we compute the error as distance between the dejectories of points on the feet are still recognizable. ket
tected pairs and the annotated pairs. For this the corresponoptions are to employ a global motion compensation step
dences between the two pairs is found and the error definedimilar to [23] or themotion featurexomputed from 3D
as the average distance between corresponding points, seajectories introduced in [6].
Figure 10. The average error is less than 30 pixels from the |t will be also useful to model the period of a walk cycle

ground truth for 410 frames. Note that the peaks in the error[10, 19]. Currently the method assumes little variation in
plot correspond to missed detections. For another sequenceyalking speed.

the distance was below the same threshold for 310 frames  Finally we point out that the proposed motion-based

cases were due to incorrect detection of arm motion. such as the pedestrian detectors in [11].
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