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Abstract

This paper proposes a method for estimating the 3D body
shape of a person with robustness to clothing. We formulate
the problem as optimization over the manifold of valid depth
maps of body shapes learned from synthetic training data.
The manifold itself is represented using a novel data struc-
ture, a Multi-Resolution Manifold Forest (MRMF), which
contains vertical edges between tree nodes as well as hori-
zontal edges between nodes that correspond to overlapping
partitions. We show that this data structure allows both effi-
cient localization and navigation on the manifold for on-the-
fly building of local linear models (manifold charting). We
demonstrate shape estimation of clothed users, showing sig-
nificant improvement in accuracy over global shape models
and models using pre-computed clusters. We further com-
pare the MRMF with alternative manifold charting methods
on a public dataset for estimating 3D motion from noisy 2D
marker observations, obtaining state-of-the-art results.

1. Introduction
Estimating the body shape of a person offers the poten-

tial for applications in the domains of clothes fitting, fitness
analysis, and digital content creation. A number of com-
mercial full-body capture systems exist that have been de-
ployed in a range of retail outlets. Such systems, using laser
or structured light scanning [2, 3], provide accurate recon-
structions, but tend to be costly and require a dedicated cap-
ture space.

Consumer level depth sensors offer an inexpensive al-
ternative, but pose a number of challenges: The first is the
quality and completeness of the data. The current gener-
ation of sensors is still relatively noisy (e.g. the depth er-
ror standard deviation of a sensor using random dot pattern
projection is approximately 3-10mm at distances of 1.5-3m
where most of the body is in view). The scanned data may
also be incomplete and contain holes, which need to be
filled in order to obtain a watertight mesh. A method for
regularization is therefore required, and typically a paramet-
ric body shape model, trained on a large database is used for
this [5, 6, 31].

Figure 1: Schematic of the Multi-Resolution Manifold Forest.
The manifold learning data structure proposed in this paper is
based on randomized decision forests. In addition to the standard
vertical moves, we additionally allow horizontal traversal between
tree nodes, based on a learned manifold graph. Finding the region
with the closest mean to the green point, right, with a single search
path requires moving between trees. Shown are tree nodes and ex-
ample path (left) and corresponding search space regions (right)
with matching colors.

A second issue – in certain settings – is clothing. For
an accurate measurement users may be willing to undress
in the privacy of their home or a dedicated booth. However,
for applications in public areas, or for passive measurement,
it may be required to estimate the body shape with the user
fully dressed. Previous work handling such cases uses skin
color segmentation and fits a body shape model only to this
partial data [8], while most other work does not address this
issue explicitly.

In this paper we deal with both of these issues, and
present a method that is able to estimate human body shape
under clothing from a single depth map in under a second.
We formulate the task of shape estimation as that of opti-
mizing an energy function over the manifold of human body
shapes. The energy function is designed such that it is ro-
bust to clothing, leading to solutions which fit inside the
input depth map, as a person fits inside their clothes (Fig-
ure 2). The manifold of possible, unclothed human body
shapes is learned from synthetically generated depth mea-
surements. To this manifold we attach a map of generating
parameter vectors for pose and shape. Given a segmented
input depth map, we first find an initial solution on the man-
ifold using a similarity measure robust to clothing. Around
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Figure 2: Human body shape estimation. A qualitative example
of our method. The user stands in front of the system and is shown
a visualization of their estimated body shape in under a second.

this location we build a parametric model over the generat-
ing parameters for pose and shape personalized to the cur-
rent user. As a final step we use this model in an iterative
closest point (ICP) framework and minimize an energy term
robust to clothing.

Our work is inspired by work on manifold learning [13,
29]. Unlike global methods that ‘unwrap’ the manifold, we
use a local charting approach, i.e. a local linear approxi-
mation to ‘navigate’ the manifold [20, 24]. We propose a
method to efficiently perform both steps: localization on
the manifold and navigation within the manifold. At the
center of this approach is a novel data structure: the Multi-
Resolution Manifold Forest (MRMF). Similar to the man-
ifold forests in [16] it defines multiple random partitions
on the space. Crucially, in addition to the standard vertical
moves down a forest, the MRMF allows horizontal moves
between different trees, see Figure 1. We show that these
horizontal moves lead to a dramatic improvement in perfor-
mance.

Our key contributions are (1) introducing the Multi-
Resolution Manifold Forest (MRMF) for representing a
manifold and its application to on-the-fly charting and
manifold-constrained optimization, (2) evaluating the ap-
proach on two different problems: clothed human body
shape estimation and 3D motion reconstruction from 2D
markers.

1.1. Related work

In this section we briefly review prior methods for body
shape modeling and relevant work on manifold learning.

Model-based Body Shape Estimation. A number of
methods have been proposed to estimate body shape from
multiple images or depth measurements. Early work [5],
inspired by the 3D Morphable Models of Blanz and Vet-
ter [12], learned separate models of pose and shape com-
bined with linear blend skinning (LBS) (A discussion of
which can be found in [22]). One draw-back of the sep-
aration of pose and shape is the inability to model pose-
dependent deformations such as muscle bulges. This was
a motivation for the SCAPE model [6], where the defor-
mation of each mesh triangle is composed of three trans-
formations: (i) the rigid transformation of a single relevant
bone, (ii) a pose-dependent transformation learned from the
mesh of a single person in multiple poses, and (iii) a shape-
dependent transformation learned from meshes of multiple
people in a neutral pose. The per-triangle transformations
are smoothed in a post-processing step to provide the final,
watertight mesh. Previous work fitted the SCAPE model
to multiple synchronized images [9], a single minimally
clothed image [18], and multiple un-synchronized depth
images [31]. Hasler et al. semi-automatically fit a human
model to a full-body scan of a clothed person by iteratively
deforming the mesh and projecting the result back into the
space of valid body shapes [19]. These methods provide
accurate results, but are still computationally expensive (in
the order of minutes).

Recent work extends the concept of pose-dependent
shape deformations, proposing a tensor-based body model
(TenBo), which conditions the non-rigid triangle deforma-
tions on both pose and shape, thus capturing, for exam-
ple, differences between male and female deformation [15].
The method was demonstrated on single depth map fitting
with tight clothing and took approximately 1-2 seconds.
Handling clothing, i.e. estimating the true body shape un-
der clothing, remains a research challenge. One avenue is
explicit clothes segmentation and modeling [32], however
the number of possible styles and materials makes this a
formidable task. This motivates the idea of being as ro-
bust to clothing as possible. Previous work relies on two
constraints: any body shape estimate must lie inside any
present clothing, and as close as possible to unclothed skin
regions found by color segmentation [8]. We develop this
idea further by removing the need for skin segmentation and
proposing an energy function that increases the robustness
of body shape estimation under clothing.

Manifold Learning. Segmented, non-clothed human
depth images lie on a low-dimensional manifold embedded
in the ambient space of all possible depth images. Given
a novel input – which contains clothing – we wish to lo-



calize it on the manifold and use the generating parame-
ters of the local neighborhood to learn a statistical model
for optimization. There exists a large body of research on
discovering and parameterizing a manifold. The majority
of methods seek a map from the ambient data space to a
low-dimensional global parameter space – effectively un-
wrapping the data, while preserving certain statistical prop-
erties of the neighborhood graph [14]. Global methods,
such as ISOMAP [29] unwrap the manifold by preserving
all geodesic distances in the neighborhood graph. Local,
neighborhood preserving methods include Locally Linear
Embedding (LLE) [25], which preserves the approximation
of a point by a linear combination of its neighbors, and
Laplacian Eigenmap [10] and Hessian LLE [17], which pre-
serve the Laplacian and Hessian derivatives of the neighbor-
hood graph.

Global mapping methods fail to adequately model closed
manifolds, which are commonplace in vision tasks, e.g. the
cyclical manifold of human walking poses. To unwrap such
a manifold, one has a few options. Firstly, an arbitrary lo-
cation on the manifold can be selected to apply a ‘cut’ -
thus allowing the manifold to unwrap along its intrinsic di-
mensions, but losing the continuity. Secondly, a multi-level
neighbor graph [21] can be built to support easy navigation,
but at the cost of expensive construction. Alternatively, the
manifold can be embedded into a higher dimensional space
in which closed loops are preserved. Pitelis et al. [24] show
that these approaches perform poorly on closed manifolds.
They propose a piece-wise linear model of a manifold,
learning an atlas of overlapping linear charts. In contrast
with previous manifold charting approaches of Roweis et
al. [26] and Brand [13] they do not attempt to unwrap the
charts – thereby avoiding loop cutting or the need for spu-
rious extra dimensions. We propose to extend this idea fur-
ther, and build charts as and when required around a point of
interest, approximating the tangent space around this point
and maximizing the accuracy of the linear approximation.
All previously discussed methods require a two-stage ap-
proach: (i) construction of a neighbor graph, and (ii) learn-
ing the manifold from this graph. Our MRMF combines the
two into a single structure – effectively the neighbor graph
defines the manifold.

2. Building a Manifold Forest
Our proposed Multi-Resolution Manifold Forest

(MRMF) is an ensemble of randomized space partitioning
trees which are connected to each other. During training we
learn a graph including the tree edges and edges between
trees (see Figures 1 and 4).

2.1. Learning the trees

The aim is to learn an ensemble of trees that are bal-
anced while still maintaining randomization between them.

xl

xk

θj

Med.
M. +/- 2

τj

(a) (b) (c)
Figure 3: Splitting a region. Split function parameters are se-
lected based on a random subset of points (red, (a)) within a region
rj (delimited by the black lines). (b) A random point xk and its
most distant point xl within this subset define θj – the normal to
a separating hyperplane. (c) To locate the separating hyperplane
we bisect θj between the two most distant points, projected onto
θj , within a small subset around the median.

Essentially, the trees can be viewed as defining an adaptive
grid on the ambient space, in a manner similar to k-d trees.

The MRMF is a set, T , of binary trees ti ∈ T which hi-
erarchically partition the ambient data space RD. We train
each tree with the same dataset X = {xi}, xi ∈ RD, i.e.
we do not use bagging [16]. In our applications we assume
the samples xi to lie on a d-dimensional manifoldM em-
bedded in RD with d < D.

The parameters Θj = (θj , τj) for each node j define a
separating hyperplane in the ambient space RD by its unit
normal θj ∈ RD and a threshold τj ∈ R. The data assigned
to each node, Xj , is partitioned into two subsets: XLj and
XRj , depending on the value of the split function h(x,Θj) ∈
{0, 1}. Our split functions take the form:

h(x,Θj) = I(x>θj > τj), (1)

where I(·) is the indicator function. The set XLj contains
samples x ∈ X for which h(x,Θj) = 0, the set XRj con-
tains those for which h(x,Θj) = 1. To find Θj , we sample
a random subset, Dj ⊂ Xj , sample a point xk ∈ Dj and
find the most distant point to it in Dj :

xl = arg max
x∈Dj

‖xk − x‖ . (2)

The normal θj to our hyperplane is the unit length vector
between these two points: θj = (xl − xk)/(‖xl − xk‖).
Figure 3 illustrates the parameter selection process within a
region.

In contrast to standard methods [16], the trees are learned
in an unsupervised manner and without optimizing for a
classification or regression objective. Instead, the goal of
an MRMF is to define a space partitioning adapted to data
located on an unknown manifold. To keep the tree aproxi-
mately balanced, the threshold τj of each node is chosen to
create a partition which best separates the data close to the
median along θj . We order the projected values, pi = x>

i θj
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Figure 4: Connecting tree nodes with overlap. The red and blue
trees define a hierarchical partitioning of the data space. Our
MRMF connects different tree nodes whose regions intersect, such
as red tree node A and blue tree node B, allowing a search to move
between trees.

for all x ∈ Dj and find pm and pm+1 with the largest dif-
ference within r elements of the median. The threshold, τj
is set as τj = (pm + pm+1)/2.

2.2. Learning the graph

The set of nodes, V of the MRMF graph are simply the
nodes of the trees, denoted as vti ∈ V with t the tree, and i
the node index respectively. The set of edges, E , which are
all directed, is composed of all parent-child edges Et along
with edges between trees Es,t. Formally, the set of edges is
defined as:

E = (
⋃
t∈T
Et) ∪ (

⋃
(s,t)∈T

Es,t) (3)

While Et is defined as part of the tree learning process,
learning the inter-tree edges Es,t, is more involved. The
idea, as shown in Figure 4, is that two nodes vsi and vtj in
trees s and t are connected if the regions they define inter-
sect. Exact computation of these intersections is expensive
in high dimensions, even in the case of linear splits [7]. In-
stead, we use the data samples to estimate intersections, and
connect nodes vsi and vtj if the intersection of their sample
sets Dsi and Dtj is non-empty.

Not all pairs of regions are connected: two regions are
connected only if they are tree leaves at the same stage dur-
ing the learning process (trees are grown breadth-first). Do-
ing so ensures that connected regions are of similar volume,
resulting in a coarse-to-fine structure. Note that exact com-
putation of region volume is expensive in high dimensions,
and many regions are open with infinite volume.

3. Optimization on the Manifold
Our aim is to optimize a function f defined on points

that lie on a manifold M. We first find an initial solution
by traversing, both horizontally and vertically, the trained

MRMF. Upon reaching a leaf node we are able to efficiently
query the local neighborhood with the horizontal connec-
tions and build a local chart.

3.1. Finding approximate initial solutions

In order to minimize a function f with an MRMF, we
first need to find good initial solutions. These solutions are
points on the manifoldMwhich we hope are (i) in the basin
of the global solution, and (ii) are close to the global solu-
tion. Note that we are not restricted to finding a single ini-
tial solution. Rather we are looking for k candidates from
which horizontal searches are initiated. In the case where
f = d(x,y) and d() is a metric, existing methods such
as optimized k-d trees offer an efficient solution [23, 28].
However, these methods do not necessarily extend to the
general case, where no assumptions about f can be made.
Inspired by the multi-scale approach of graduated optimiza-
tion [11], we propose a coarse-to-fine graph walk over the
MRMF. During tree construction, we keep track of the arith-
metic mean x̄tj of all the samples in node vtj . During test-
ing we evaluate the function at those points and choose fur-
ther nodes to explore by evaluating neighbors on the MRMF
graph. Since the x̄tj are arithmetic means, they can lie out-
side the manifold: so the only assumption we make on the
function f is that it can be evaluated everywhere in the am-
bient space, that is, for every x ∈ RD.

The search strategy is as follows: a priority queue is ini-
tialized with all tree roots giving higher priority to nodes
with lower cost function values. The current best candidate
is removed from the queue and its children added; if they are
leaves they are stored as potential results. The method iter-
ates until reaching its budget of function evaluations. Using
horizontal moves increases the chance of finding the leaf
node in the graph which minimizes f , allowing to correct
for choices made during early tree traversal (Figure 8).

The output of this approximate discrete function mini-
mization method is given as a list of leaf averages x̄tj , serv-
ing as seed points to compute a local chart on the manifold
M. Generally, this can be seen as another characteristic
of our method: no graph is explicitly built over the train-
ing data, as in [16, 30] for instance. We believe this is an
advantage as the graph representation is smaller and no in-
formation is lost.

3.2. Building a local chart

All the leaf averages x̄tj act as the seeds from which the
local chart of the manifoldM is computed. The seeds are
expanded to their neighborhood using a random walk of
horizontal moves. The walk continues until a given num-
ber of nodes has been reached. This parameter controls the
local chart size and must therefore be chosen carefully, de-
pending on a given optimization problem.

A local chart of the manifoldM is then computed using



(a) Training meshes

(b) Sub-sampled measurement images
Figure 5: Training data used for body shape estimation. We
learn the manifold of segmented human depth measurements from
synthetically rendered samples. The first row shows synthetic
3D meshes generated during training, the second row shows the
smoothed and sub-sampled virtual depth measurement and silhou-
ette images from which we learn a manifold. The samples shown
here are representative of the pose variation which we train upon.

Principal Component Analysis (PCA) over the set of nodes
reached by the walk (c.f . in differential geometry the tan-
gent space is used to compute a local chart). Our mapping
is linear and is given by the transformation from the PCA
space to the ambient space c(y) = x where y is the vector
of coefficients for the first principal components. The chart
provides a locally linear parameterization of the space, in
which standard methods like gradient descent can be used
to minimize the function f ◦ c w.r.t. y. To account for local
curvature, using the chart is restricted within a given range
of the PCA components. Outside this range, a new chart is
recomputed around the new initial solution [4].

4. Body Shape Estimation

We formulate the estimation of human bodies obscured
by clothing as optimization over the manifold of unclothed
body shapes. The function we wish to optimize is asym-
metric – we wish to find a solution on the manifold, i.e. a
nude body shape, which lies inside the clothed input. The
MRMF allows efficient optimization of such measures.

Our model is learned from synthetic depth measurement
images (vectorized as x) which are smoothed and sub-
sampled (Figure 5(b)). Every element x ∈ x is defined
as x = (xα, xd), with xα representing the amount of valid
information at each pixel – computed from the blurred and
sub-sampled silhouette image, and xd the depth value, com-
puted from the silhouette and depth images respectively.
Our dissimilarity measure is defined between input x and

points on the manifold y as

d(x,y) =

|x|∑
i=1

k (v(xαi , y
α
i )) + k

(
v(xαi x

d
i , y

α
i y

d
i )
)
. (4)

The inside function is defined as

v(x, y) = |(x− y) (1 + I(x < y)β)| , (5)

where k(·) is a kernel function which reduces the influence
of outliers. This function induces a penalty of β for mani-
fold points that are greater than input points in either α or
depth, i.e. they either lie outside the input or in front of it.1

We compute initial solutions on the manifold using the
approach described in Section 3.1. We then perform a ran-
dom walk to find a neighborhood within which to build a
parametric body model.

For the final estimation of body shape we revert to a
standard ICP approach between the original high-resolution
point cloud and our parametric body model. The parametric
body model is built from the vector field of generating pa-
rameters attached to the manifold neighborhood found pre-
viously. Our ICP optimization minimizes the following en-
ergy function:

E(Φ) = Ed(Φ,q) + γEr(Φ) , (6)

where Φ = (Φs,Φp) are the parameters for the shape and
pose respectively, and q are the corresponding points in the
input depth map to each vertex of our model. The data term
is defined as

Ed(Φ,q) =

|q|∑
i=1

k (d(m(Φ)i,qi)/σ) (7)

wherem(Φ)i generates the model vertex in correspondence
with qi, d(.) is a distance function defined below, σ is the
noise level, and k a kernel function which increases robust-
ness to outliers. The distance we use is a modified point-to-
plane distance of the form

d(p,q) = inside
(
(p− q)>nq

)
, (8)

where nq is the normal at point q. Our clothing-robust in-
side term,

inside(y) = y (1 + I(y < 0)τinside) , (9)

gives preference to models beyond the measured depth, i.e.
the naked shape is within the clothed shape. We iterate
between minimizing Equation 6 with Levenberg-Marquardt
and finding correspondences. In the correspondence stage
we restrict point-to-model matches based on normal direc-
tions to improve accuracy.

1A property of our camera model is that depth values are negated.



(a) (b) (c) (d) (e)
Figure 6: De-noising the Swiss roll. The MRMF lends itself well to de-noising. Given noisy data (a), we learn the MRMF and associated
graph, shown magnified in (b). For each point we walk this graph, (c) and build a linear model using PCA (d). To obtain the denoised
results each point is projected onto the first two principal components (e).

Figure 7: Simultaneous tree and graph growing during learn-
ing the MRMF on the Swiss roll dataset. The first row shows the
regions associated with the leaf nodes of two trees. The second
row shows the current inter-node graph for the leaf nodes with
node colors representing the tree index. The final row shows the
full inter-node graph with colors encoding the depth of each node
(from blue to orange).

5. Experiments
In this section we demonstrate the efficacy of our pro-

posed data structure, the MRMF, for both optimization of
3D human body shape and 3D reconstruction of articulated
motion. We show that our method is able to optimize asym-
metric similarity measures between input points and the
learned manifold and handle noisy observations. In all non-
toy experiments we outperform the state of the art.

5.1. Toy examples

First we illustrate key features of the MRMF. Figure 6
shows qualitative de-noising results on a Swiss roll dataset.
Building a locally linear chart around every point allows
efficient de-noising with linear models, given a suitable
neighborhood size.

Figure 7 visualizes the graph growing process. Connect-
ing tree nodes by their overlap leads to a detailed structure
which captures the shape of the manifold. A few edges
which ‘jump gaps’ – crucially not at the leaf level – remain,
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Figure 8: Probability of not selecting the global minimum with
and without horizontal moves. For a given budget of function
evaluations the probability of finding the global minimum greatly
increases when allowing horizontal moves. In this experiment an
asymmetric similarity measure is used on 200, 000 samples from
a noisy Swiss roll dataset. Plotted are the mean values of 1000
queries. Both methods are implemented using a priority queue.

allowing coarser moves away from local minima during op-
timization. Figure 8 demonstrates this quantitatively for an
asymmetric similarity measure. When minimizing a general
function with forests, one is forced into a greedy approach,
leading to poor final results. Here we see the probability
of selecting a solution other than the global minimum com-
puted over a large number of random trials.

5.2. Human body shape estimation under clothing

Given a noisy, incomplete depth sensor input of a clothed
person we estimate their body shape by learning a manifold
of depth maps rendered from unclothed human body shapes.
Given a clothed input image we use an asymmetric similar-
ity function robust to clothing to optimize on the manifold.

We evaluate the accuracy from four physical measure-
ments taken from eight subjects – height, waist circum-
ference, chest circumference, and shoulder width. From
the eight subjects we capture ten depth measurements with
varying pose. We define paths for the same physical mea-
surements on our human mesh. This allows us to predict



0 1 2 3 4 5 6 7 8
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

ICP Iterations

M
e
a
n
 m

e
a
s
u
re

m
e
n
t 
e
rr

o
r 

(c
m

)

 

 

Global PCA

k−Means Charts

MRMF On−the−fly Charting

Figure 9: Mean body measurement error per iteration for dif-
ferent models. We evaluate the ICP performance per iteration
of three different methods of building statistical models. MRMF
based on-the-fly charting outperforms both approaches both for
initialization accuracy and subsequent optimization due to using
all available data for initialization, and models which are pre-
cisely localized.

the measurements given an estimation result. All model pa-
rameters were estimated on a separate validation dataset of
different people.

Training the body shape manifold To collect training
data we register a 3D model to 4,281 of the highest quality
scans in the CAESAR dataset [27], obtaining a set of reg-
istered human meshes with corresponding pose skeletons.
We perform an inversion of LBS to ‘unskin’ each regis-
tered mesh into the mean pose. From this set of normalized
meshes we generate ten millions virtual samples via inter-
polation (applied to shapes belonging to the same gender).
These are perturbed locally by sampling from a learned pose
model. To generate virtual depth images we render each
model using a virtual camera setup matching the physical
setup. During both capture and rendering the depth images
are normalized such that the first two directions of maximal
variance in 3D space lie parallel to the imaging plane. The
normalized depth images are smoothed and down-sampled
to 64 × 64 (Figure 5). The MRMF consists of ten trees of
depth 18.

Evaluation We evaluate the use of the inside term (Equa-
tion 4) over simple Euclidean distance between the input
depth map and the manifold. We find that the error of the
initialization decreases from 10.16cm to 5.31cm, demon-
strating the benefit of the inside term. We further evaluate
the effects of using different parametric models in the sec-
ond stage of the fitting, measuring the accuracy per ICP it-
eration of 3 different approaches: (1) a single global model,
(2) pre-computed local models, and (3) on-the-fly chart-
ing using the MRMF. The results of this are shown in Fig-
ure 9. The initialization accuracy of the on-the-fly charting
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Figure 10: Mean errors for five physical measurements over
eight different clothing types on a single person. Plotted is the
mean absolute error after optimization with, and without the in-
side term. Note that the inside term reduces both the size and
variance of the error.

approach is higher than either the local chart initialization
or the relatively simple global mean initialization. This is
due to the fine sampling of the manifold captured by the
MRMF. Furthermore the convergence speed with the on-
the-fly models is higher compared to that of the k-Means
and global charts. To evaluate the robustness of our cost
function to different clothing, we measured the shape esti-
mation accuracy over eight clothing types worn by the same
person. Figure 10 shows the results, demonstrating the ben-
efit of employing the inside term in our cost function.

5.3. 3D human motion reconstruction

To compare our approach to methods for manifold learn-
ing we carry out the same 2D human motion reconstruction
experiment presented by Pitelis et al. [24]. The goal is to
reconstruct the 3D positions of 31 motion capture mark-
ers from CMU mocap database [1] walking and running
sequences given noisy 2D observations. We learn a man-
ifold from the vectorized 3D marker locations of training
subjects, find the closest point on the manifold to the back-
projected 2D marker locations, and build a chart around this
point. This chart is used to reconstruct the 3D marker loca-
tions. In Table 1 we present the results of this experiment
for two different datasets and two viewpoints each: a side
viewpoint, and a generic viewpoint from above. In all ex-
periments we train and test on different subjects and add 3D
Gaussian noise with standard deviation of about 5cm 2. Our
MRMF on average outperforms a global PCA model and
the Atlas method in [24] where numbers are available 3.

2The precise amount of noise added is 4.96cm for the walking only
dataset and 5.33cm for the walking + running dataset. Values obtained
from correspondence with Pitelis et al. [24].

3Results of Pitelis et al. [24] are omitted for the generic viewpoint as
we could not equate our PCA baseline results to theirs.



Walking Sequences Walking + Running Sequences
Side View Generic View Side View Generic View

dims PCA Atlas MRMF PCA MRMF PCA Atlas MRMF PCA MRMF
1 3.50 2.99 2.65 5.43 2.86 5.88 3.75 3.43 7.06 3.67
5 2.78 2.64 2.41 5.22 2.72 3.50 3.02 2.96 5.67 3.38
10 2.50 2.69 2.45 5.32 2.74 3.08 2.96 2.89 5.78 3.33
15 2.58 2.75 2.56 5.63 2.81 3.24 2.99 2.95 6.12 3.36
20 2.63 2.79 2.57 6.06 2.82 3.33 3.03 2.95 6.43 3.36
21-NN 2.59 2.81 3.32 3.57
k-NN ε 2.58 k 12 ε 2.81 k 15 ε 3.24 k 5 ε 3.52 k 8
Table 1: 3D human motion capture reconstruction results. We
reconstruct 3D human mocap data from orthographically pro-
jected 2D input with noise. The results of our MRMF approach
consistently out-perform those using a global PCA and those of
the recently proposed Atlas [24], along with those produced by av-
eraging k-nearest-neighbors. We indicate the best score per model
dimensionality d in bold, errors are given in cm.

6. Conclusion
We have presented a novel data structure, the Multi-

Resolution Manifold Forest, for the modeling of manifolds
and demonstrated its efficacy on two challenging real-world
experiments. Our approach to human body fitting was
shown to increase robustness to clothing, estimating the
user’s body shape in under a second. In the future we plan
to investigate further accuracy improvements by adapting
the neighborhood on which the charts are computed.
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