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Abstract

This paper considers the problem of clustering large data sets in a high-dimensional
space. Using a random forest, we first generate multiple partitions of the same input
space, one per tree. The partitions from all trees are mergedby intersecting them, re-
sulting in a partition of higher resolution. A graph is then constructed by assigning a
node to each region and linking adjacent nodes. ThisGraph of Superimposed Partitions
(GSP)represents a remapped space of the input data where regions of high density are
mapped to a larger number of nodes. Generating such a graph turns the clustering prob-
lem in the feature space into a graph clustering task which wesolve with the Markov
cluster algorithm (MCL). The proposed algorithm is able to capture non-convex struc-
ture while being computationally efficient, capable of dealing with large data sets. We
show the clustering performance on synthetic data and applythe method to the task of
video segmentation.

1 Introduction

Clustering is the task of partitioning a data set into subsets so that the data points in each
subset are more similar to each other, according to some distance measure, than those from
different subsets [7, 13]. It is a fundamental technique in data analysis and has manyap-
plications in computer vision, including image and video segmentation [1, 6, 15, 22]. This
paper mainly considers the problem of clustering data on non-convex manifolds in high-
dimensional spaces.

Many existing algorithms for clustering directly use the distances between input data in
an iterative process. Given the number of clustersK as input, theK-means algorithm al-
ternates the computation of cluster centres and cluster membership. Mean shift clustering
requires a kernel bandwidth parameter and performs hill climbing in the data density space,
assigning each point to the mode it converges to [4, 5, 12]. Spectral clustering is based
on pairwise similarities and a variety of methods have been proposed with different defini-
tions of affinity functions [18, 21, 23]. Recent work introduces some scale invariance by
computing similarity values depending on the local neighbourhood of each point [26].
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(a) Input data density (b) Random forest partitions (c) Graph structure (d) Clustering result

Figure 1: Overview of the proposed clustering algorithm. (a) PDF of a 2D synthetic data set
where brighter regions correspond to higher density. (b) Compact partitions (intersections of multiple
partitions from decision forest). (c) The edges of the Graphof Superimposed Partitions (GSP), brighter
colour corresponds to larger edge weight. (d) The nodes of the GSP coloured by the final cluster ID.

In this paper we present a two-stage clustering algorithm that allows structure recovery of
clusters of different sizes as well as non-convex shaped clusters. We first construct multiple
partitions of the data using a random forest [3]. This process spreads the density of data
samples evenly, similar to histogram equalization, but applied to a high dimensional space.
The partitions of each tree are then merged by intersecting them, resulting in a partition of
higher resolution.

We subsequently construct a graph by assigning a node to eachregion and connect neigh-
bouring nodes. Graph-based clustering methods use connectedness between points, allowing
to cluster non-convex and elongated structures [10, 14, 24, 25]. We employ the Markov Clus-
ter algorithm (MCL) which is based on stochastic flow simulation [20]. The main parameter
of this algorithm is the resolution which controls the size of the generated clusters. A lower
resolution parameter results in fewer clusters. See Figure1 for an example with a synthetic
data set involving non-convex manifolds and varying sampledensities.

The two steps of the method presented here, remapping the space and clustering the
resulting graph, are independent and alternative methods could be used for each step. Our
motivation to use a random forest in the first step is that it isfast to train and extremely
fast to evaluate new data points. The overlapping nature of the trees can be efficiently used
to link the regions without using an explicit notion of distance, which can lead to incorrect
connections in the case of thin, elongated manifolds. For the second step, the Markov cluster
algorithm (MCL) [20] is employed owing to its scalability to large data sets.

Related work can be found in the literature on clustering using trees. Decision trees have
been used for clustering, for example by assuming the existence of a distance measure [2]
or by assuming a second, uniformly distributed, backgroundclass [16]. Decision forests
have also recently been applied to visual codebook construction where leaf indices from
multiple trees are stacked into a single vector [17, 19]. The resulting partitions are useful
for the task of codebook generation, but do not necessarily capture the underlying structure
of the data. Random projections of the data have been shown toreduce the dimensionality
of the data while sufficiently preserving distances. They have been applied to clustering
high dimensional data in combination with EM clustering [9]. Recently, random projection
trees have been used to learn the structure of manifolds, outperformingk-d trees in terms of
quantisation error [11].

With the goal of maintaining the benefits of tree-based approaches, the proposed algo-
rithm employs a random forest to create multiple partitionsof the input space. The subse-
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Figure 2:Feature Space Partitioning Using a Random Forest.Sketch of a random forest with three
trees splitting 2D input feature space into different partitions. An example of a region is filled with a
colour for each partition. The identical input region in thefeature space marked by ‘x’(left), will have
a different partition index in each tree (right). An exampleof intersection (compact partition) is shown
in green.

quent graph construction allows the application of efficient graph clustering methods, which
in the case of video segmentation needs to handle millions ofdata points. The algorithm
does not require the number of clusters, nor kernel radius asinput, however the number of
trees, the tree depth and the resolution parameter in the graph clustering step need to be
determined.

2 Clustering Algorithm

Given is a set ofN data points,{xi}, wherexi ∈ RD for i = 1, . . . ,N, our task is to assign a
cluster index, c∈ (1, ...,C), to everyxi as well as to find a meaningful number of clustersC.
We would also like to acquire a function that returns a cluster index for any new query data.
The strategy is to use a random forest [3] for constructing a Graph of Superimposed Partitions
(GSP) that maps the high dimensional data to a lower dimensional space. We subsequently
aggregate the regions represented by the GSP nodes into clusters by employing MCL.

2.1 Data Partitioning

Partition Defined by a Single Tree. We first partition the input data with a forest, i.e. an
ensemble ofF trees,{Tj}, j = 1, . . . ,F . Starting at the root node, the input data is recursively
split at each node when a certain number of data points (typically one thousand) has reached
this node. At each node, we compute a random split function for a data pointxi as the inner
product with a vectorf ∈ RD. The vectorf is a random unit vector generated using a normal
distribution for each element, followed by normalisation.The resulting valuexT

i f can also
be interpreted as a projection onto a random direction. The values are histogrammed and the
median taken as the split threshold in order to evenly split the input data. An initial sampling
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Figure 3:Random Forest Mapping. Intersection index vectors have leaf indices across the trees as
their elements, and represent a compact partition.

step allows the adaptation of the histogram range. The stopping criterion is defined by the
depth of the tree.

Then j leaf nodes of treeTj represent the regions of the induced partition. An input data
point xi is assigned to one of these leaves to obtain a unique indexl j ∈ {1, . . . ,n j}, called
thepartition indexof xi in the j-th tree. All data points assigned to the same leaf node ofTj

belong to the samel j -region of the input data space. We denote the partition of the feature
space induced byTj asP j .

Multiple Partitions Defined by a Forest. Multiple random trees result in different parti-
tions of the input space, see Figure2. It shows that the identical input will not necessarily
have the same partition index in each tree. Thus, there is no consistency between the parti-
tion indices obtained from different trees. By concatenating the partition indices ofxi from
all F trees, we define theintersection index vectoras

l(xi) = (l1, . . . , lF)
T ∈ NF

+ ,

where each elementl j of the vector represents the leaf index inTj , see Figure3. We now
define theintersections, I (l), of the output ofF trees according to theintersection index
vectorsand merge all partitionsP j , j = 1, . . . ,F by intersection, i.e. by subdividing every
region such that eachI (l) consists of inputs with only a singlel. As these intersections form
compact partition regions, we also refer toI (l) ascompact partitions. For each compact
region with a sufficiently large number of sample points we compute the first two moments
of its data points to compute volume and density estimates.

2.2 GSP: Graph of Superimposed Partitions

The input data is represented by a graphG (V,E), consisting of a set of nodesV and edges
E, which we call the Graph of Superimposed Partitions (GSP).

Assignment of a Node to Each Compact Partition. Let us consider a certain compact
partitionI (l) and call itIα for now. We assign a nodeVα to Iα as a representative of
the group of inputs,xi ∈ Iα . All the input data ofIα is therefore associated withVα . We
characteriseVα by its mean,µα , and the sample density of input instances,λα , which we
define as
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µα =
1

N(Iα )
∑

xi∈Iα

xi and (1)

λα =
N(Iα )

S(Iα)
, (2)

respectively, whereN(Iα) is the number of input instances inIα andS(Iα) an approxima-
tion to its volume. We setS(Iα) = ∏D

d=1σ2
d , whereσ2

d is the variance in thed-th coordinate
direction. Note that a nodeVα has by definition a common intersection index vector and we
call it lα for convenience.

Edges between adjacent nodes.We now connectadjacentpairs of nodes by edges. Two
nodes representing two compact partitions,Iα andIβ , are defined as adjacent when the
intersection of their index vectorslα and lβ are different only by one element. That is, we
define an edgeEαβ between two nodesVα andVβ if

Hdist(lα , lβ ) = 1, (3)

whereHdist(⋅, ⋅) stands for the Hamming distance of the two vectors. We associateEαβ with
a weightwαβ , which we define as

wαβ =
N(Iα)+N(Iβ )

S(Iα)+S(Iβ )
. (4)

Algorithm 4 describes the process of generating the GSP.

2.3 Graph Clustering Using the Markov Cluster Algorithm

In order to cluster the GSP, we use the Markov Cluster (MCL) algorithm [20]. The main
idea of the algorithm is to simulate flow within the graph, increasing weights where it is
strong and decreasing weights when it is weak. After convergence regions of constant flow
remain which are separated by edges with zero flow, defining a clustering of the nodes.

This idea is formulated as a random walk within the graph. First the graph is transformed
to a Markov graph, i.e. a graph where for all nodes the weightsof outgoing edges sum
to one. Flow is simulated by computing powers of the Markov matrix, corresponding to
flow expansion. An additionalinflation operator is inserted to allow weighting of the flow.
The MCL process consists of alternately applying expansionand inflation steps to the same
stochastic matrix until convergence. The contraction and expansion parameters of the MCL
process influence the resolution of the output. An implementation of the algorithm that
exploits the sparsity of the graph lends has shown to be scalable to very large numbers of
nodes. Given certain sparseness conditions, th algorithm has a complexity ofO(Nk2), where
N is the number of nodes, andk is the average of neighbours of nodes in the graph [20].

3 Experiments

This section illustrates the performance of the proposed clustering algorithm. We also apply
the method to the task of automatic video segmentation.
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ADDALL EDGES()

1 for treeId in Trees
2 for nodeClusterIdin Graph
3 Intersections= allIntersection(treeId,nodeClusterId[treeId])
4 for otherClusterIdin intersections
5 if hammingDistance(otherClusterId,nodeClusterId)== 1
6 addEdge(nodeClusterId,otherClusterId)

ALL INTERSECTION(treeId, partitionId)

1 intersections= {}
2 for nodeClusterIdin graph
3 if nodeClusterId[treeId] == partitionId
4 intersections.add(nodeClusterId)
5 return intersections

Figure 4:Algorithm for GSP Generation

3.1 Synthetic data

Figure1 (a) shows the density of a 2D synthetic data set that involvesnon-convex manifolds
and varying sample densities. Figure8 shows that the proposed algorithm successfully iden-
tifies three clusters and assigns the cluster index to each node of the GSP using appropriate
parameters. In the following we examine the effect of different parameter settings on the
clustering result on the same data set.

In the stage of partitioning data by a random forest, the treedepth determines the resolu-
tion of the quantisation. When the tree depth is small, clusters cannot be distinguished from
each other, see Figure5. Currently the optimal tree depth is found on a validation set and set
to a value of 8 in our experiments.

The most influential parameter of the MCL algorithm is the resolution (orinflation) term.
A high inflation parameter leads to smaller clusters. This parameter allows a smooth control
between compact partitions and clustering, see Figure6. We consistently set the parameter
value to 1.1 in our experiments to capture the structure of the data. Note that a property of
MCL is that it converges more rapidly for larger values of theinflation parameter.

We further investigate the effect of thepre-inflation parameterπ in MCL. It is the ex-
ponent applied to the edge weight,wnew= wπ , allowing modulation of the edge contrast: a
highpre-inflationparameter will lead to a larger variation among the edge weights, resulting
in a higher resolution clustering, see Figure7. Good results have been obtained with values
in the range from 1 to 4.

The three parameters, tree depth,inflation andpre-inflationall contribute to the resolu-
tion of the final clustering. They are currently found by testing them on a validation set for
each application.

3.2 Comparisons

We compare our method againstK-means [8], Mean Shift clustering [12] and Spectral Clus-
tering [26] using publicly available code. None of these methods is able to correctly separate
the correct C-shaped clusters, see Figure9. The timing results shows that onlyK-means is
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(a) depth=4 (b) depth=6 (c) depth=8

Figure 5:Effect of tree depth.

(a) inflation=1.1 (b) inflation=1.2 (c) inflation=1.3 (d) inflation=1.7 (e) inflation=2.0

Figure 6:Effect of the MCL inflation term.

(a) exponent=1 (b) exponent=2 (c) exponent=4 (d) exponent=6

Figure 7:Effect of changing the power exponent for edge weights in MCL.

Figure 8: Clustering Result. The original PDF is shown on the left. The result of the proposed
clustering method is a function which, for any new data point, returns a cluster index or an ‘unknown’
state. This function is shown in the centre. On the right the same function is shown along with the
data points. As the GSP focuses on regions of high density, the output becomes less precise when the
function is computed outside of these.

comparably efficient and only for a small (K=3) number of clusters, while Mean shift and
spectral clustering are significantly slower, see Table1.

3.3 Video Segmentation

As an example application, we apply the GSP algorithm to the video segmentation problem
on two public test sequences. The data space is six-dimensional and includes the pixel
coordinates, time index and the colour values:x = [x,y, t, r,g,b]T, each coordinate scaled
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(a) K-Means (b) Mean Shift (c) Spectral Clustering

Figure 9: Comparison of Clustering Algorithms. Results on synthetic data set sampled from the
distribution in Figure 1(a). For K-means, Mean Shift and Spectral Clustering results using two different
parameter settings are shown. None of the algorithms captures the correct C-shaped clusters.

Method No. samples×103 Time [s] Time/106 samples [s]
K-means,k = 3 1000 10 10
K-means,k = 4 1000 29 29
Mean Shift,bandwidth= 0.30 200 127 635
Mean Shift,bandwidth= 0.32 200 191 955
Spectral Clustering 3 180 60000
GSP 5000 112 22

Table 1: Computation time comparison. This table shows the computation times (in seconds) of
various clustering methods applied to the synthetic 2D dataset in Figure8. The last column shows the
computation time taken per millions of sample points. The proposed method is comparable with an
efficientK-means implementation and significantly faster that Mean Shift and Spectral Clustering.

to the range[0,1]. The clustering algorithm is run on the complete space-timevolume and
therefore insures that segmented regions are consistent over time.

The algorithm is run with an increasing number of tree depth,where the clustering res-
olution increases with tree depth, see Figures10 and11. The segmentation results show
plausible segmentations at multiple resolutions of regions of similar colour. These may be
used to generate layered image representations or as input for further processing.

The computation time for segmenting a sequence of 30 frames of size 200× 130 at the
highest resolution setting was approximately 10 minutes onan Intel Xeon 3.2 GHz machine.

4 Discussion

This paper introduced a novel clustering algorithm based ona Graph of Superimposed Parti-
tions (GSP) generated with a random forest. The resulting graph clustering problem is solved
using the Markov Clustering algorithm. The method is able torecover non-convex structure
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Figure 10:Results on Flower Garden Sequence.Top row shows input frames, rows below show
segmentation results with increasing cluster resolution parameter.

Figure 11:Results on Mother and Daughter Sequence.Top row shows input frames, rows below
show segmentation results with increasing cluster resolution parameter.

and can efficiently handle large data sets. This scalabilityis required in computationally
expensive applications such as video segmentation. We haveinvestigated the influence of
some parameters and compared the performance with three existing clustering algorithms
on synthetic data. The algorithm was also applied to video segmentation of standard test
sequences.

Some compact partitions are not represented in the GSP due toa lack of samples; ex-
tending the graph by including those extra node remain an open question. Since the GSP
performs a remapping of input-space distances, one direction for future research includes
the comparison to other graph-based methods for dimensionality reduction such as Locally
Linear Embedding (LLE) and Isomap.
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