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A Single Camera Motion Capture System for

Human-Computer Interaction
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SUMMARY This paper presents a method for markerless
human motion capture using a single camera. It uses tree-based
filtering to efficiently propagate a probability distribution over
poses of a 3D body model. The pose vectors and associated
shapes are arranged in a tree, which is constructed by hierarchi-
cal pairwise clustering, in order to efficiently evaluate the likeli-
hood in each frame. A new likelihood function based on silhou-
ette matching is proposed that improves the pose estimation of
thinner body parts, i.e. the limbs. The dynamic model takes
self-occlusion into account by increasing the variance of occluded
body-parts, thus allowing for recovery when the body part reap-
pears. We present two applications of our method that work in
real-time on a Cell Broadband EngineTM: a computer game and
a virtual clothing application.
key words: video motion capture, tree-based filtering, silhouette

matching, Cell Broadband EngineTM

1. Introduction

Human pose estimation from image sequences has var-
ious applications in areas such as human-computer in-
terfaces, computer games, and avatar animation, and is
an area of active research [2]–[19]. See [20] for a recent
review on human body tracking.

Several motion capture systems that use multiple
cameras have been proposed, e.g. [6]–[8], [16]. These
systems use a shape-from-silhouette approach to esti-
mate the 3D surface and subsequently estimate the 3D
pose parameters. Such systems work well under con-
trolled conditions and have been used to capture ac-
curate shape and motion of single actors. In contrast,
this paper is motivated by real-time applications such
as gesture interfaces. The goal is to build a robust pose
estimation system from a single camera. The setup is
thus much simpler, however the estimation problem be-
comes less constrained.

Real-time motion capture has been achieved using
incremental tracking, however, in this case the prob-
lem of initial pose estimation needs to be solved and
often estimation errors can accumulate over long im-
age sequences [12], [19]. Detecting body parts [4], [14],
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[21], [22] can reduce the computational cost and does
not require a manual initial pose estimate, but find-
ing body parts in a single view is particularly difficult
because of self-occlusion. Efficient versions of particle
filtering have been used with success in the past, but
they have the drawback of requiring pose initialization
at the start and when tracking failure occurs [5].

Recently learning-based methods have received
more attention, where a mapping from observation to
body pose is learned from a large set of training exam-
ples [2], [23]–[25]. However, these methods do not adapt
the final model estimate to an individual subject.

This paper presents a system for real-time pose
estimation. Body silhouettes obtained through back-
ground subtraction are used as input. We use tree-
based filtering for pose estimation, where likelihoods
are evaluated in a coarse-to-fine fashion while taking
temporal consistency of the poses into account [26].

This paper introduces several innovations that im-
prove the robustness and efficiency:

(1) The 3D body model is selected from a discrete
set of models according to the user’s body size, is used
to generate silhouettes that are used for more accurate
matching.

(2) To reduce computation time we evaluate the
silhouette distance on an image pyramid using different
image resolutions for different tree levels.

(3) The dynamic model explicitly takes self-
occlusion into account by increasing the variance of the
joint parameters of occluded body-parts. This facili-
tates tracking these parts when they reappear.

(4) The cost function for silhouette matching is
based on weighted distance functions with equal weight
on the shape skeleton obtained from the silhouette.
Using this normalized weight improves the estimation
with respect to thinner body parts such as arms and
legs.

2. Tree-based filtering framework

Tracking of body pose is formulated using a probabilis-
tic framework using the standard prediction and up-
date equations: Given the observations up to time t,
z1:t, the aim is to estimate the posterior distribution of
the state xt which consists of joint angles and 3D global
position. The posterior is updated when obtaining the
observation at time t:
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(a) Three body models (b) Silhouette

Fig. 1 3D body model. (a) Three body models (out of 30)
that are used to represent the variety of body shapes. During the
initialization step one of the models is selected. (b) Silhouette
of the right body model in (a). The body is represented by a
triangular mesh animated by a skeleton with 27 joints. Projected
limbs are shown in different colors in the silhouette image.

p(xt|z1:t) = ctp(zt|xt)p(xt|z1:t−1), (1)

where ct is a normalization constant and p(zt|xt) and
p(xt|z1:t−1) are likelihood and prior distribution, re-
spectively. The prior is computed as follows:

p(xt|z1:t−1) =
∑

xt−1

p(xt|xt−1)p(xt−1|z1:t−1), (2)

where p(xt|xt−1) is the distribution for state transi-
tions. The state posterior distribution is estimated in
each time step by repeated application of prediction
(Equation 2) and update (Equation 1).

We use a point-mass representation for the distri-
butions [27] and approximate the integrals in the fil-
tering equations by replacing continuous integrals with
Riemann sums over finite regions. The distributions
are modeled as piecewise constant over these regions.
In [26] we presented a method that uses a hierarchical
partitioning of the state space and represent the distri-
butions by the center points at each partition. In con-
trast, in this paper we use hierarchical shape clustering
to define partitions in state space, i.e. each partition is
represented by a cluster prototype and we assume piece-
wise constant distributions for each of the clusters. Let
R be the compact region of the state space that con-
tains the valid pose vectors. This region is divided into
Nl partitions {X i,l}Nl

i=1 at each tree-level l,

R =

Nl
⋃

i=1

X i,l for l = 1, . . . , L . (3)

Define a discrete probability distribution p(x̂i,l
t )

over the regions X i,l,

p(x̂i,l
t |z1:t) =

∫

xt∈X i,l
p(xt|z1:t) dxt. (4)

Given the distribution over the leaves of the tree,
p(x̂i,L

t−1|z1:t−1), at the previous time step t− 1, the pre-
diction equation now becomes:

p(x̂j,l
t |z1:t−1) =

NL
∑

i=1

p(x̂j,l
t |x̂i,L

t−1) p(x̂i,L
t−1|z1:t−1). (5)

Algorithm 1 Shape hierarchy construction
Input:

Pose data {xj}N
j=1

Threshold values of silhouette distance, tL

Initialization at level L = 0
Assign all pose data {xj}N

j=1
to a single node.

At level L > 0
For each node n on the parent level L − 1,

1. Select the pose with the smallest mean silhouette distance
to the other silhouettes in node n as prototype,

2. Do
Select the pose with the largest mean silhouette dis-
tance dmax from the selected poses as prototype

While dmax > tL

3. Cluster by assigning all other poses to their closest proto-
type.

4. Each cluster forms a node at level L with parent node n.

The transition distributions are estimated by his-
togramming the transitions in the training data.

2.1 Hierarchy of silhouette shapes

Using a gyro-based motion capture system, pose data
is collected from subjects that each perform a variety
of motions. Only poses are stored that differ at least 5
degrees in any joint angle from other poses. The pose
data is used to generate silhouette shapes by projecting
a 3D body model onto the image plane. The geometric
model is a triangular mesh whose vertices are attached
to a skeleton with 27 joints, see Figure 1. We use a cal-
ibrated camera to compute the projection of the mesh
onto the image plane.

Hierarchical pair-wise clustering based on silhou-
ette shape distances (see next section) is used to con-
struct the shape hierarchy, see Algorithm 1 and Fig-
ure 2. This is similar to the shape hierarchy in [28] but
with important differences: (i) the input to the algo-
rithm is the maximum within-cluster distance, and (ii)
each node also contains an associated pose vector.

The tree is used for computing a coarse-to-fine ap-
proximation of the true posterior distribution over the
poses, i.e. the tree is evaluated once for each frame. If
a node has a low posterior value in an upper level, the
subtree of that node is not searched. The thresholds
for this decision are set according to the distance in the
clustering step. Note that in contrast to [26], the state
space is divided based on the silhouette distance. This
avoids the generation of different nodes for cases where
poses are nearly identical but one limb is occluded in
frontal view.

For further computational efficiency, an image
pyramid is used for evaluating the silhouette distance.
For a tree of height three image resolutions of 80×60,
160×120, and 320×240 pixels are used at the first to
third level, respectively.
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Fig. 2 Shape hierarchy. Each node in the tree contains a
pose vector and a silhouette representation. It is generated by
hierarchical clustering in the silhouette shapes. The tree contains
57,136 nodes.

2.2 Likelihood computation

The likelihood relates the observed silhouette zt in the
current image to the the unknown pose xt. We model
the likelihood function with a normal distribution:

p(zt|xt) ∼
1√

2πσ2
exp

(

−d(S, Txt
)2

2σ2

)

, (6)

where d(S, Txt
) is a silhouette distance between the sil-

houette S (foreground 1, background 0) observed in the
image in the current frame and the model (template)
silhouette Txt

generated from the 3D body model in
pose xt, and the variance σ2 is determined experimen-
tally. In the following, we drop the subscript xt of the
model silhouette for simplicity.

The choice of the distance for comparing two sil-
houettes is crucial, as we require high discriminative
power as well as rapid evaluation. A straightforward
option is the XOR distance in a fixed bounding window
w (which is essentially a Hamming distance):

dXOR(S, T ) =
1

|w|
∑

k∈w

(1 − δS(k),T (k)), (7)

where δ is the Kronecker delta function (1-XOR) and
k represents a pixel in the window w. However, since
this cost weighs differences close to the contour, equal
to those close to the skeleton of the silhouette, it is
sensitive to variation of clothing and body shape.

In order to emphasize structural difference between
the silhouettes, Chen et al. [29] have suggested a ‘core-
weighted’ XOR distance, defined as:

dwXOR(S, T ) =
1

|w|
∑

k∈w

(1 − δS(k),T (k))g(k), (8)

where the weight

g(k) = D(S)(k) + αD(S̄)(k) (9)

gives different weight to different types of mismatches.
D(S) is the distance transform of the silhouette image
S, where pixel values are zero inside the silhouette and

(a) Input (b) Silhouette (c) wXOR (d) nwXOR

Fig. 3 Weighted distance functions for likelihood com-

putation: Extracted silhouette (b) from input (a) and the
weights for (c) core-weighted XOR and (d) normalized core-
weighted XOR, where high brightness corresponds to larger
weight. The normalized XOR in (d) makes the pose estimation
of limbs more stable.

increase with the distance from the contour outside the
silhouette. S̄ is the pixel-wise inverse of the silhouette
and its distance transform is zero outside the contour
and high in regions near the core area, i.e. the shape
skeleton. The weight α is set to 5 in [29], thereby highly
penalizing the case when points inside the image silhou-
ette are not covered by the model projection.

One drawback of this choice of silhouette distance
is that pixels on different parts of the shape skeleton
have different penalties. This is because the distance
transform D(S̄) generally contains higher values for
large body parts such as the torso, leading to insta-
bility when estimating the pose of thinner limbs. We
therefore normalize the weight such that each pixel on
the shape skeleton has the same weight. This is done by
dividing the right term in Equation 9 by the distance
between the contour and the skeleton:

g(k) = D(S) + β
D(S̄)

D(S̄) + D(Sskl)
, (10)

where Sskl and D(Sskl) are the skeleton of the silhou-
ette shape and its distance transform, respectively. We
set the weight β to 1. The weight of a pixel inside the
silhouette is normalized by dividing the distance from
the silhouette contour, D(S̄), by the distance between
the contour and the skeleton, D(S) + D(Sskl). The
shape skeleton is defined as the ridge of the values in
the distance transformed image D(S̄). See Figure 3 for
a visualisation of the weights for the normalized core-
weighted XOR distance dnwXOR(S, T ). Figure 4 demon-
strates the improvement in robustness over other cost
functions.

We use integral images for efficiently computing
the silhouette distance dnwXOR(S, T ). First we trans-
form the silhouette distance into the following form:

dnwXOR(S, T ) =
1

|w|





∑

{k|T (k)=1}

D(S)

+
∑

{k|T (k)=0}

β

D(S̄) + D(Sskl)
D(S̄)



 . (11)
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Fail Error Success

Type Fail Error Success
wXOR+ DM1 24 0 0
wXOR+ DM2 24 0 0
nwXOR+ DM1 7 7 10
nwXOR+ DM2 0 10 14

Fig. 4 Tracking an arm swing using the proposed dis-

tance function and dynamic model. In 24 experiments, the
proposed distance function based on normalized weighted XOR
performed most robustly. DM1 and DM2 are two different dy-
namic models: DM1 does not explicitly handle self-occlusion in
contrast to DM2, where Equation 14 is applied. The top shows
the three cases corresponding to the table below, namely tracking
failure, inaccurate tracking (error) and successful tracking.

We compute a horizontal integral image I of the dis-
tance transform D(S), i.e. I(x, y) =

∑x

j=1 D(S)(j, y),
and evaluate the first term in Equation 11 by using the
integral values at contour points of the silhouette T :

∑

{k|T (k)=1}

D(S) =

h
∑

y=1

ny
∑

j=1

(

I(xr
j , y) − I(xl

j , y)
)

, (12)

where h is the height of the bounding window w. The
contour points are represented by ny pairs of left xl

j

and right xr
j horizontal positions of points on the sil-

houette contour at each vertical position y (see Fig-
ure 5). The second term in Equation 11 can be com-
puted in a similar way using a horizontal integral image
of α̃

D(S̄)+D(Sskl)
D(S̄).

We use color based background subtraction, where
we normalize the color values by their intensities and
model the pixel-wise distributions with Gaussian pdfs.
In each frame, the silhouette is detected as the set of
pixel with a Mahalanobis distance larger than a thresh-
old. For changing backgrounds adaptive techniques
such as in [22] can be used.

2.3 Motion model

A first order process model is used as a dynamic model,
which is easy to evaluate and shows good adaptability
to unknown motion:

p(xt|xt−1) ∼ N(xt−1, Σ), (13)

where Σ is a diagonal covariance matrix and the vari-
ance σj for each body part j is determined from the
available motion data.

Since we use a single camera, self-occlusion occurs
in many cases. In such cases, stable tracking of the oc-
cluded parts is difficult because it is not well modeled
with the simple dynamic model in Equation 13 during

x
y

Model silhouette T

lx1
rx1

lx2
rx2

lx3
rx3

Fig. 5 Silhouette distance computation. The distance in
Equation 11 can be computed efficiently by only evaluating hor-
izontal integral images at the silhouette contour, shown here for
a single scan line.

occlusion. However, the system is capable of estimat-
ing the occurrence of self-occlusions using the 3D body
model by searching for body parts whose projection is
not assigned to any pixel. The variances in the dynamic
model of the occluded parts is gradually increased:

Σ = diag(σ′
j

2
),

σ′
j =

{

σj if part j is visible
mσj if part j is occluded

, (14)

where m > 1 is a parameter for increasing the standard
deviation of an occluded part. We use m = 5 in our
experiments. When the occluded parts become visible
again, their parameter estimates have a large variance.

3. Experimental results

In the following experiments, we use a color camera
with an image resolution of 640×480 pixels, and down-
sample the image to 320×240 pixels. The pose data
is collected by a gyro-based motion capture system us-
ing a single subject who performs a variety of motions:
turning, side stepping, crouching, Sumo-wrestler’s mo-
tion (shiko), pointing, kicking, moving both arms up-
ward and downward and golf-swings. The data is cap-
tured at 120 Hz and the total number of pose vectors
is about 330,000. After eliminating similar poses as
described in section 2.1, we have 57,136 poses and con-
struct the tree with three levels as shown in Figure 2,
where 7,828, 26,805 and 44,108 nodes are generated for
top, middle and bottom level, respectively.

For accurate tracking it is beneficial for the 3D
body model to have a similar shape to the current sub-
ject. Based on the dress size system in the Japanese In-
dustrial Standard (JIS L4004 and L4005) we obtain 10
body models for men, 14 for women and 6 for children.
Before tracking begins we compute silhouette contours
and create the tree structure for each body model. All
trees and silhouette shapes are loaded into RAM before
tracking, requiring approximately 300MB. One of the
trees is selected depending to the person to be tracked
according to body height, chest size and weight. This
selection can be done either from images or, if known,
entered by hand.
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Fig. 6 Silhouette distance and estimated 3D position

for different body models. Average measurements on a test
sequence with 493 frames. The distance values are similar for var-
ious body sizes, but only the model of the measured size ‘mMA’
and similar models yield measurements close to the ground truth
(red line). m and c, represent male and child, respectively. T, L,
M, S, and P are indexes of height (T is tallest). Y, A, and B are
indexes of chest measurement (B is largest).

Each new subject is asked to assume an initializa-
tion pose at a specific location. The model silhouette
is then used to automatically select the best matching
body model within the set. For any given input se-
quence, pose estimation is started when the center of
the observed silhouette is close to the image center. Ini-
tially we assume that the subject is facing the camera
in order to resolve the ambiguity between the frontal
and backside pose. In the subsequent frames this am-
biguity is handled based on the past pose estimates and
the dynamic model.

Figure 6 shows average estimates of global 3D posi-
tions in depth (Z-direction) and those of silhouette dis-
tances between the observed silhouette and the model
silhouette of the estimated pose with respect to body
models of 10 males and 6 children. The values are com-
puted on an image sequence with 493 frames of a male
subject with measured body size of ‘mMA’. The per-
son moves his arms in various ways, crouches and steps
sideways. The global position of the body center is ap-
proximately at Z = −100 mm (see red line). Although
the average silhouette distance is similar for the dif-
ferent body shapes, only mMA, mMB, and mLY have
average Z values similar to the correct position. The
larger sizes mMB and mLY also fit well as all sizes were
measured from subjects in underwear and the person in
the video is wearing regular clothes.

Figure 7 shows tracking results for three different
motions. The frame rate of the input sequence is 15 fps
and the duration of the whole sequence is about 2 min-
utes. In Figure 7(a) the target person turns around.
This is a difficult case as it is hard to estimate from a
single view which way the person is turning from a side
view. In this example the pose is correctly estimated,
i.e. the correct mode of the multi-modal pose distribu-

(a) Turn

(b) Golf swing

(b) Pointing

Fig. 7 Tracking results during three different actions.

The estimated 3D model is superimposed onto each original im-
age in the upper rows, the input images are shown below.

tion was chosen here. However, such poses are some-
times estimated incorrectly. In Figure 7(b) the subject
performs a golf swing towards the camera. Even though
the right arm is occluded, the poses are correctly esti-
mated. Figure 7(c) shows tracking result of the point-
ing right arm. Our method is capable of tracking such
a thin part based on our silhouette distance described
in the section 2.2.

One limitation of the system is clearly the depen-
dency on the variability of motion in the database. The
method essentially relies on the fact that the database
contains a pose close enough to the current input. If
this is not the case mis-estimation occurs. Thus the
ability to recover is essential. Figure 8 shows some ex-
ample frames taken from a sequence containing over
3000 frames with a number of different motions. Note
that even though pose misalignments occur in some
frames, the algorithm is able to recover from these and
correctly resume tracking.

The computational time varies depending on the
number of likelihood evaluations. The average pro-
cessing time per frame is 127ms using a high-end
PC (two Opteron 280 Dual Core processors with
2.8GHz, 4GB RAM) and 86ms using a Cell Broad-
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#000 #100 #200 #300 #400 #500 #600 #700 #800 #900

#1000 #1100 #1200 #1300 #1400 #1500 #1600 #1700 #1800 #1900

#2000 #2100 #2200 #2300 #2400 #2500 #2600 #2700 #2800 #2900

Fig. 8 Tracking results. The 3D model in the estimated pose is superimposed onto
the input image with an offset. Our system recovers from misestimation occurring in
frames #1300 and #1500. In these cases the likelihood values based only on the silhouettes
is very similar for multiple poses.

Table 1 Computation time in [ms/frame].

PC Cell/BE
Min Max Avg Min Max Avg

Preprocessing 21 29 22 20 53 23
Pose estimation 21 236 104 17 169 62

Total 43 261 127 39 202 86

Table 2 Number of distance evaluations at each level.

1st 2nd 3rd
Average 141601.8 43464.5 3497.5

Std. dev. 23147.0 16916.2 385.4

band EngineTM(Cell/BE) [1], respectively (see Ta-
ble 1). Cell/BE achieves faster processing than the
high-end PC by using its parallel computation mech-
anism of multi-processing cores consisting of a Power
Processing Element (PPE) and seven Synergistic Pro-
cessor Elements (SPEs). In our implementation, par-
allel processing on SPEs is used for background sub-
traction on different image partitions, distance trans-
form computation at three image resolutions, and sil-
houette distance evaluation, computed in parallel on all
seven SPEs, respectively. The preprocessing stage in-
cludes background subtraction and distance transform
with reading a new image frame from the camera. The
high maximum value of preprocessing for the Cell/BE
system is due to the use of preliminary camera driver
software.

Most of the time for pose estimation is spent on
distance computations. When computing the distances

according to section 2.2, the processing time is propor-
tional to the image size. Since we use three resolutions
of 80×60, 160×120, and 320×240, respectively,the pro-
cessing time for a single silhouette distance at the first
and the second tree level is about 1/4 and 1/2 of that of
the third level with full resolution, respectively. Table 2
shows the number of distance evaluations per frame at
each level. By using multi-resolution images we obtain
an average speed-up factor of 3.1.

4. Application

A computer game based on the proposed method has
been developed according to the setup shown in Fig-
ure 9. Figure 9(a) shows a system configuration of
the computer game. The pose of a player is estimated
on a Cell reference set and transfered to a game PC.
The game PC uses the pose sequence to move the
player’s character, a ninja avatar. The player controls
the avatar by his/her body motion with the aim to
defeat an opponent while avoiding attacks from him.
The types of motion that the system recognizes are (1)
raising both arms to the sides and bending them on the
chest (transfiguration to ninja), (2) crouching (avoid hit
1), (3) stepping sideways (avoid hit 2), (4) swinging the
right arm upright and lowering it quickly (hit 1), and
(5) raising both arms and lowering them quickly (hit 2).
We collected about 400,000 poses at 120 Hz for 3 sub-
jects performing the above motions, and reduced them
to about 30,000 poses by eliminating similar poses. The
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Player’s monitor

Game
PCCELL 

reference 
system

Ethernet

Camera

Target
(Player)

CG

Audiences’ monitor

CG

(a) System configuration of the interactive game

Player

Player’s 
monitor

Player’s
Character

Opponent

Fire ring

(b) Overview of the interactive game

Fig. 9 Interactive game with visual motion capture.
The player’s character is attacking the opponent by throwing
the fire ring, whose motion is controlled by the player’s motion.

system has been demonstrated with approximately fifty
different users at an electronics fair.

Additionally, a real-time clothing simulation has
been implemented by replacing the game PC in Fig-
ure 9(a) with a PC performing avatar control with cloth
simulation. As shown in Figure 10, the avatar assumes
the same pose as the user and the clothes of the avatar
move according to the motion of the avatar using cloth
simulation [30]. The pose data and the hierarchy used
for obtaining the results in Figure 10 is the same as in
the experiments in section 3.

5. Conclusion

In this paper we presented a method for markerless
human motion capture using a single camera. It is
based on tree-based filtering using a hierarchy of body
poses found by clustering the silhouette shapes. We
have introduced several improvements such as a person-
specific body model, image pyramids for speeding up
distance computations, a dynamic model that includes

(a) kick (b) turn

Fig. 10 Clothing simulation with visual motion cap-

ture. The avatar moves with the user and its clothes deform
according to the avatar’s motion.

self-occlusion and a new silhouette distance that im-
proves the estimation with respect to thinner body
parts such as arms and legs. A real-time motion capture
system was implemented and applied to an interactive
computer game.

This work focused on handling automatic initial-
ization and recovery, in order to build a working real-
time system. The use of discrete shape templates leads
to motion estimates that are less smooth over time than
a continuous tracking approach. However, the pose
estimates could be smoothed temporally or refined in
a continuous optimization step. Temporal integration
over a larger time window can help to resolve some
cases of ambiguity, e.g. by using the Viterbi algorithm
as in [9], [17]. There are many interesting directions
for future research, including the combination of our
model-based approach with parts-based methods or ef-
ficient learning.
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