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Abstract. This paper presents a motion capture system using two cam-
eras that is capable of estimating a constrained set of human postures
in real time. We first obtain a 3D shape model of a person to be tracked
and create a posture dictionary consisting of many posture examples.
The posture is estimated by hierarchically matching silhouettes gener-
ated by projecting the 3D shape model deformed to have the dictionary
poses onto the image plane with the observed silhouette in the current
image. Based on this method, we have developed a virtual fashion show
system that renders a computer graphics-model moving synchronously
to a real fashion model, but wearing different clothes.

1 Introduction

In a virtual fashion show application the goal is to animate a computer-graphics
(CG) model in real-time according to the motion of the real person, while the CG
model is wearing a costume different from the actual clothes of the real model.
Essentially this task requires an efficient technique for human motion capture
with real-time estimation capability.

Currently available commercial motion capture systems require markers or
sensors attached to a person. In our system we want to avoid use of visible
markers and sensors because fashion models are watched by audiences and we
think this is important for variety of motion capture applications in the case
of home or office use. One well known approach to vision-based motion capture
uses space-carving methods. The shape of a target person is obtained as the
intersection of 3D regions generated by inverse projection of silhouettes. This
technique [1, 2] requires relatively clean silhouette data obtained from many
cameras surrounding the person to be captured. Many approaches that makes
use of a 3D shape model of the human body have also been proposed, such as
matching feature extracted from captured image and that from the projected 3D
shape model [3, 4], learning direct mapping from image features to 3D body pose
parameters [5], and defining the force that moves the 3D model to the extracted
image feature [6]. These method works with a small number of cameras, but many
problems such as stability over long sequences, accuracy, and computational cost
remain to be solved. Choosing suitable image feature, such as silhouette [5–7],
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Fig. 1. Overview of the motion capture method

depth [4], and edge [3], depending on an individual target application is one of the
important issues. Another problem is how to search for the optimal posture in the
high-dimensional parameter space. Real-time motion capture has been achieved
using incremental tracking, however, in this case the problem of initial posture
estimation needs to be solved [8], and often estimation errors can accumulate over
long image sequences [9]. The highly nonlinear relationship between similarity
and posture parameters further complicates the problem. In order to address
this, versions of particle filtering have been suggested [10, 11], which have been
shown to yield good results, given manual initialization and off-line processing.
Part-based methods [12] or the use of inverse kinematics [13] may be able to solve
the initialization problem and reduce the computational cost of the estimation.
However, these methods require the localization of individual body parts, which
is difficult in cases where self-occlusion occurs and there are few cameras.

The virtual fashion show application requires real-time processing for syn-
chronizing the motion between the real fashion model and the CG fashion model.
Some conditions appropriate for this application can simplify the problem for
achieving real-time posture estimation. First, the type of motion is restricted
and known beforehand because the motion of the real fashion model is limited
to walking and several types of posing. In our setting the fashion model can be
required to wear clothes that tightly fit the body, making silhouette matching
possible, whose simple definition of cost function also contributes to real-time
processing. We are also able to obtain an individual 3D body shape model using
a 3D body scanner, as well as posture sequences obtained by a marker-based
motion capture system. These data are used to generate a posture dictionary
off-line (see section 2 and Fig. 1). Our posture estimation method consists of
global position estimation (see section 3) and local pose estimation (see section
4) based on silhouette matching between the observed foreground silhouette and
the candidate silhouettes generated from the posture dictionary. We show track-
ing results and a performance evaluation of posture estimation in section 5 and
describe a virtual fashion show in section 6.



2 Posture dictionary

The 3D body shape model is obtained using a laser 3D shape scanner. The num-
ber of polygons is reduced from two million to 2000 by deleting vertexes having
small curvatures manually in order to achieve a low computational time for sil-
houette projection. For 640 × 480 images the time is 1.2–2.0 ms per silhouette
projection on a standard PC. The kinematics of the human body are commonly
represented by a tree structure whose top node is the body center. Local coordi-
nate systems are defined relative to each body part corresponding to the parent
node in the tree structure.

A commercial marker-based motion capture system is used to collect a variety
of postures, including walking, posing and turning. A posture captured by the
marker-based motion capture system is represented in terms of rotation angles
and translation vectors for each joint, which are the parameters to transform
a local coordinate system to that of its parent node. Note that the translation
parameters are constant except for the body center because the lengths of the
body parts do not change, and the parameters of the body center stand for
transformation between the local coordinate of the body center and the world
coordinate. We call the set of rotation parameters for a posture p a posture
vector, which is denoted by rp = (rp1, · · · , rp(3Nb)), where Nb = 21 represents
the number of joints.

Due to periodic motion, some poses are very similar, and similar postures are
represented by prototype, found by greedy clustering, based on the difference
d1(a, b) between postures a and b:

d1(a, b) = max
i=1,···,3Nb

|(rai − rbi) mod π|, (1)

which is the largest angle difference of all the rotation parameters. As a result
of the clustering, the distances d1 between any two prototypes are larger than a
threshold, which is 7 degrees in our experiments.

3 Global position estimation

For estimating the global body position in the 3D scene, we track the target
person in two camera views independently based on our previously proposed
tracking algorithm [14]. The algorithm enables us to stably track an object in
an image sequence captured at a high frame rate as the motion in the image is
very small. In our experiments a frame rate of 100 fps is used. The algorithm
consists of corner point tracking and outlier elimination using an affine motion
model, and estimates the target position in the image as the mean location of
the tracked corner points (see Fig. 2(a)).

Next, we compute the global position of the body center in the world coordi-
nate system by triangulation of the two calibrated cameras using the estimated
target positions in the images. The postures that we estimate in the virtual fash-
ion show are all upright, so that the body center moves almost parallel to the
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Fig. 2. Estimation of global positions of a target person. The tracked feature points
are indicated by the white ‘+’ marks on the original images in figure (a). The white
rectangle is the tracking window, which is the minimum rectangle containing all feature
points. The large white ‘+’ marks are the mean positions of the feature points, which is
the estimated target position in the image (P g1 and P g2), and the white line segment
attached to it is the estimated motion vector

floor and the height is approximately fixed to a constant hb, the height of the
body center in standing pose. As shown in Fig. 2(b), we project a line passing
through both the camera center Oc and the target position P gc in the image
plane onto the plane H, parallel to the floor with distance hb, and denote the
projected line by lc. Assuming that the XZ-plane of the world coordinate system
corresponds to the floor, lc is expressed as follows:

lc = {PH(t(P gc −Oc) + Oc) | t ∈ R} , c ∈ {1, 2}, PH =
(

1 0 0 0
0 0 0 hb
0 0 1 0
0 0 0 1

)
, (2)

where PH denotes the projection matrix onto the plane H. The global position
G of the target is the point of intersection of the projected lines l1 and l2.

Fig. 2(c) shows results of global position estimation. The target person walks
along the Z-axis at X = 1500 and poses at Z = 500 and Z = 4000 shifting
the body weight in the X-direction. In this experiment, two pairs of cameras
are used to cover the entire area, but one of them is used for global position
estimation at each time instance. The area covered by each pair of cameras is
determined beforehand and the pair of cameras is selected when the estimated
global position is in its predetermined area.

4 Posture estimation

We perform the posture estimation procedure at every fourth frame, i.e. at 25
fps, because the computational cost of the posture estimation is much higher
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Fig. 3. Silhouette extraction and similarity computation

than that of global position estimation. First, candidate postures that are in the
neighborhood of the posture in the previous frame are selected as candidates
to restrict the search: We select postures that have similar joint angles to the
previous posture p, i.e. the distance d1(p,m) between p and a selected posture
m is smaller than a threshold (60 degrees in our experiments). Since the sim-
ilarity is defined in terms of silhouette difference in the image (see section 4.1
for details), we impose a further restriction on the number of postures based
on an appearance-based distance: We define such an appearance-based posture
difference, d2(a, b), using the positions of joints projected onto the image plane
for fast computation as

d2(a, b) = max
i=1,···,Nb

|pai − pbi|, (3)

where pai and pbi denote the positions of joints in the image that are obtained by
orthogonal projection of the 3D joint coordinates. We sort the postures selected
by d1(p,m) based on the appearance-based distance d2(p, m), and select the first
n postures as the set M of candidate postures. We use n = 60 in our experiments.
The silhouettes of each candidate posture m in the set M are generated by (1)
translating the 3D body shape model to the estimated global position G in order
to correspond the size of the silhouette with that of the observed silhouettes, (2)
deforming the 3D body shape model to assume the pose m, and (3) projecting
the polygons of the deformed 3D body shape model into each camera view.

The observed silhouette is extracted using background subtraction (see Fig. 3(a)).
This often results in noisy silhouettes, but has proved sufficiently stable in our
application with reasonably stable lighting conditions.

4.1 Similarity of silhouettes

As shown in Fig. 3(b), Sp(c,m) and So(c) denote a candidate silhouette obtained
from the candidate posture m, and an observed silhouette for a camera c. R(c)
represents the smallest rectangle that contains all candidate silhouettes. The
similarity of the silhouettes, Sp(c, m) and So(c), should be high when the area of
the observed silhouette is large in the candidate silhouette and is small outside
the candidate silhouette. Thus, we use the difference between the occupancy rate
of the observed silhouette in the candidate silhouette ρi(c, m) and that outside



the candidate silhouette ρo(c,m) for the similarity normalized with the area of
the silhouette:

ρi(c,m) =
|Sp(c,m) ∩ So(c)|

|Sp(c,m)| , ρo(c,m) =
|Sp(c,m) ∩R(c) ∩ So(c)|

|Sp(c,m) ∩R(c)| , (4)

where | · | represents the area of a region.
The similarity measure is affected by the estimation error of the global posi-

tion. It is therefore necessary to perform optimization for both posture and local
shift of the global position. We shift the candidate silhouette in each camera view
with a shift d, and maximize the similarities independently for each camera in
order to optimize the global position locally. Thus, we redefine the similarity for
a posture m as

s(m) =
∑

c

max
d∈D

(ρi(c,m, d)− ρo(c,m, d)), (5)

where ρi(c, m,d) and ρo(c,m, d) denote the occupancy rate using a candidate
silhouette shifted with a shift d in the range of shifts D.

4.2 Hierarchical posture search

In order to reduce the computational cost of searching for the posture with
the greatest similarity, we adopt a coarse-to-fine strategy using a two-level tree,
which is generated on-line for each frame. The first layer of the search tree
consists of postures selected from M at every t-th posture and the rest of the
candidate postures are attached to the closest posture in the first layer as pos-
tures in the second level. We search for the optimal posture using the search tree
as follows: (1) compute the similarity based on eq. (5) for the postures on the
first level of the tree, (2) select the k postures with the greatest similarity, (3)
compute the similarity for the postures on the second level in the subtrees of the
k selected postures, and (4) select the posture that has the greatest similarity.
We use t = 3 and k = 3 in our experiments.

4.3 Initialization

If a sufficiently large silhouette is extracted in the current image based on the
background subtraction, we set the observed silhouette to be the initial target
region and start tracking based on our object tracking algorithm [14].When the
tracking results come from two or more cameras for the first time, we compute
the initial global position, and start the posture estimation with suitable initial
posture. Although the initial posture does not fit completely to the posture of
the target person, the estimated posture gradually fits to the target person in
the subsequent frames.
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Fig. 4. Results of posture estimation using four cameras. Estimated postures are in-
dicated by white contour lines on the original image. The 3D figures shown in gray
beside the contours represent postures with smoothed motion for CG animation

5 Experiments

Fig. 4 shows the results of posture estimation using four cameras for two subjects
who walk and pose differently. In each case the camera arrangement is the same
as that shown in Fig. 2(c) and the cameras capture gray-scale images with a
resolution of 640x480 pixels at a frame rate of 100 fps. Note that the frame rate
for posture estimation is 25 fps as described in section 4. The posture sequence
for each subject obtained by the marker-based motion capture system contains
about 3600 postures captured at a rate of 120 fps. After clustering the posture
vectors the dictionary for each subject consists of about 500 postures, which are
experimentally sufficient for our restricted set of motions in the virtual fashion
show. Fig. 4 shows that postures are correctly estimated in most frames. In some
frames, such as frame 150 in Fig. 4(a), however, the contour lines showing the
estimated postures are incorrect.

We have conducted experiments on 27 image sequences for evaluating the
performance of the posture estimation. The image sequences include four types
of motion shown in Fig. 5(b) performed by three subjects. We use an individual
3D body shape model and motion data for each subject obtained by a laser 3D
shape scanner and a commercial marker-based motion capture system, respec-
tively. Table 1 shows the number of misestimations and the number of frames
in which misestimation occurs. The number of misestimations, e.g. frame 150
in Fig. 4(a), is counted by comparing the estimate to the ground truth, where
postures with small alignment errors are not counted as a misestimation. The
misestimation often occurs for a particular subject H compared to the other sub-



Scenario # Sequence Frames Failures Failure frames Error in %

S-M1 4 1318 4 12 0.9
S-M2 3 1120 4 87 7.8
S-M3 3 1017 1 17 1.7
S-M4 4 1414 5 37 2.6

H-M2 4 1593 7 127 8.0
H-M3 4 1475 6 64 4.3

N-M1 3 924 6 62 6.7
N-M4 2 694 1 5 0.7

Table 1. Performance evaluation. The first column represents the type of scenario.
For example, S-M1 stands for motion sequence M1 performed by subject S. The sec-
ond column is the number of sequences, which are used in the experiments, and the
third column is the total number of frames. Columns four to six show the number of
misestimations, the number of frames in which misestimation occurs and the error rate

jects. This is because her postures in the image sequences are not contained in
the posture dictionary. In total misestimation occurs 34 times for 27 sequences,
on average about 1.3 times per sequence (0.089 times per second), correspond-
ing to 4.3 % of the total number of frames. Although we have restricted the
search space for posture estimation by selecting candidate postures similar to
the previous estimated posture, misestimation occurs for a short period. Such
temporal jitter can be reduced by temporal filtering. In our system smooth mo-
tion is generated based on the posture sequence recorded by a marker-based
motion capture system (see section 6.1). Another reason for the misestimations
is the fact that the extracted silhouettes can be very noisy due to shadows on
the floor.

6 Virtual fashion show

We have developed a virtual fashion show system using our motion estimation
method described in sections 2–4. Fig. 5 shows an overview of the system. A
fashion model walks and poses on the stage according to four types of scenarios
shown in Fig. 5(b), and our motion capture system estimates her posture. While
the fashion model walks along the stage, she poses twice at different positions
according to the scenario. Two large projector screens display a full-CG model
wearing a costume different from the actual clothes, based on clothes simulation
and CG techniques.

6.1 Smooth motion generation

As described in section 5, misestimation of the posture occurs at a certain rate.
Even when the posture is correctly estimated, the estimated motion, which is
the time series of the estimated postures, is not smooth because the estimated
postures can be slightly misaligned. These problems are critical for generating
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Fig. 5. Overview of the virtual fashion show. Three pairs of cameras are placed along
both sides of the stage. Two projectors show the CG model wearing clothes different
from the actual model as shown in the left images of figure (b)

natural motion of the CG model in the virtual fashion show. We thus combine
the estimated motion with the motion data recorded with the marker-based
motion capture system.

The recorded motion sequence contains all the postures in the same order as
the motion of a real fashion model, except for the timing of walking and posing.
We generate smooth motion by changing the playing speed of the recorded pos-
ture sequence according to the estimated posture. We start playing the recorded
posture sequence when the current estimated posture e is similar to the posture
i in the first frame of the recorded posture sequence in terms of the posture
difference d1(e, i).

The 3D figures shown in gray in Fig. 4 represent postures generated by the
smooth motion generation method. In the 150th frame in Fig. 4(a) where the
posture is misestimated, the motion model finds a plausible posture, even if
the silhouette of the estimated posture is slightly misaligned with the observed
silhouette. While this smooth motion generation method is straightforward and
effective for a specific application of the virtual fashion show, accurate posture
estimation and a universal motion generation method are necessary for general
applications.

6.2 Hardware configuration

We place three high-speed cameras on each side of the stage (six cameras in
total) in order to cover the entire stage which measures about 10 m × 3 m. Each
high-speed camera is connected to a PC mounting dual Xeon 3.0 GHz CPUs
that captures images and tracks the fashion model in the images as described
in section 3. The captured images and the tracking results are transfered to two
PCs for posture estimation mounting quad Itanium 2 1.6 GHz CPUs through a
high-speed network Myrinet, and the two PCs compute the global position and



estimate the posture with smooth motion generation. The estimated posture is
sent to a PC for clothes simulation and CG rendering through Gb Ethernet, and
the generated CG animation is displayed on two projector screens.

7 Conclusions and future work

We have presented a real-time motion capture system using pairs of cameras
and have demonstrated that the system works efficiently for a virtual fashion
show based on several constraints appropriate for the virtual fashion show, such
as known body shape, tight fitting clothes and limited types of motion.

A possible future application is a virtual try-on for online clothes shopping.
However, in order to make this approach work in more general settings, some
issues that need to be considered are automatic 3D body shape model acquisi-
tion, the use of more robust image features, and efficient matching techniques
for increasing the number of postures in the posture dictionary.
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