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Abstract— This paper describes an object detection framework
that learns the discriminative co-occurrence of multiple features.
Feature co-occurrences are automatically found by Sequential
Forward Selection at each stage of the boosting process. The
selected feature co-occurrences are capable of extractingstruc-
tural similarities of target objects leading to better performance.
The proposed method is a generalization of the framework
proposed by Viola and Jones, where each weak classifier depends
only on a single feature. Experimental results obtained using
four object detectors, for finding faces and three differenthand
poses, respectively, show that detectors trained with the proposed
algorithm yield consistently higher detection rates than those
based on their framework while using the same number of
features.

Index Terms— Object detection, Co-occurrence, Boosting, Fea-
ture selection.

I. I NTRODUCTION

T HIS paper presents a new method for constructing accurate
and efficient classifiers for detecting objects in images. Ef-

fective object detection techniques have been developed inrecent
years that solve a two-class problem by using a probabilistic
framework or by finding a discriminant function from a large
set of training samples. For example, neural network-basedface
detectors were used in [1], [2], classification boundaries were
learned by support vector machines in [3], [4], [5] and a statistical
method based on the naı̈ve Bayes classifier was proposed in
[6]. Some of these methods use raw pixel values as features.
However, they are sensitive to the addition of noise and change in
illumination. Haar wavelet features [5] and rectangle features [7],
which extract local gradient, and Gabor features, which respond
to particular directions and spatial frequencies of texture, increase
the robustness against such effects. Viola and Jones [7] proposed
a framework for selecting discriminative features and training
classifiers using AdaBoost [13], showing that good classification
performance can be achieved by a small number of selected
features at much reduced computational cost. Their approach,
which selects only discriminative features using boostingfrom
a huge feature pool, has become a general framework for object
detection and several extensions have been proposed. We will
introduce two of them and then point out problems of these
approaches. The first extension is an improvement of the boosting
algorithm itself. There are modified versions of AdaBoost such
as Real AdaBoost [8], KLBoosting [10] and FloatBoost [11].
FloatBoost was applied not only to face detection but also to
hand detection [24]. The second extension is to use an extended
set of features such that various image patterns can be evaluated.
As shown in Figure 1, in addition to the basic feature set (a),
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Fig. 1. Examples of rectangle feature sets. Basic feature set (a) consists of
only two-rectangle features. Extended feature sets (a) to (d) include features
with different numbers and arrangements of rectangles.

different arrangements or numbers of rectangles such as (b)to
(d) are used in [7], [9]. Lienhart et al. [12] introduced an
efficient scheme for calculating features rotated by45◦. Kölsch
and Turk [25] added new types of rectangle features for robust
hand detection. Viola et al. incorporated motion information in
addition to appearance into pedestrian detection [26]. Although
both extensions are effective, they are insufficient to achieve
more accurate object detection. Most of these methods construct
a weak classifier by selecting only one feature from the given
feature pool. However, the generalization performance is no
longer improved at later stages of the boosting process because the
classification task using a single feature becomes more difficult.
Viola and Jones reported that features which were selected at later
stages yielded error rates between 0.4 and 0.5, whereas features
selected in early stages had error rates between 0.1 and 0.3 [7].
Such ‘too weak’ classifiers do not contribute to improving the
generalization performance, although they can reduce the training
error. Any sophisticated boosting algorithm will encounter this
problem. However, taking the simplest approach by increasing
the variation of rectangle features or including additional feature
spaces leads to prohibitively expensive training. It is also difficult
to create new discriminative feature sets manually according to
each object of interest.

In this paper, we propose an object detection framework that
achieves higher accuracy at lower computational cost by incor-
porating the co-occurrence of multiple features at each stage of
the boosting process. In the proposed framework, discriminative
feature co-occurrences are automatically found by Sequential
Forward Selection and weak classifiers based on the best feature
co-occurrences are added through the boosting process. Fig-
ure 2 compares three methods for learning face detectors based
on rectangle features: (a) Viola and Jones’ framework, (b) a
conventional framework and (c) the proposed framework. The
framework (b) constructs a classifier by only selecting a feature
co-occurrence without using boosting. In this paper, we regard
it as a conventional framework. In our framework (c), the final
strong classifierH(x) is a linear combination of weak classifiers
h1(x) to hT (x). In contrast to the framework (a), each weak
classifier of the proposed framework consists of multiple features.
For example,h1(x) observesF features simultaneously and
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Fig. 2. Comparison of three frameworks: (a) Viola and Jones’, (b) a
conventional method of constructing a classifier by selecting feature co-
occurrence without boosting and (c) the proposed framework. Both (a) and
(b) can be regarded as special cases of the proposed framework (c).

evaluates joint statistics of these features. Structural similarities
of faces, which cannot be evaluated using a single feature, are
extracted fromz1,1 (eye regions are darker than neighboring
regions),z1,f (nostrils are dark) andz1,F (the region between
the eyes is brighter than the eyes). These combined featuresare
selected automatically. The combination of spatially separated
features as shown in Figure 2 cannot be found by the extended
feature set shown in Figure 1. From a different point of view,the
proposed framework (c) can be understood as the generalization
of (a) and (b) because they are special cases of the proposed
framework. Our framework is a solution to the problem of how to
choose features in order to build a more accurate classifier without
changing the total number of features, i.e. without increasing the
computational cost.

In the experiments we compare the performance of several
classifiers, each corresponding to a frontal upright face detector
and detectors for hands in three different poses. Performance
evaluation has been carried out by 10-fold cross validation. An
experiment integrating Real AdaBoost [8] into our framework in-
stead of standard AdaBoost [13] shows that further improvement
is possible.

Section II shows how co-occurrences of multiple rectangle
features are represented. Section III describes an algorithm for
constructing an object detector by selecting discriminative feature
co-occurrences by Sequential Forward Selection at each stage
of the boosting process. Experimental results are shown in Sec-
tion IV.

II. FEATURE CO-OCCURRENCEREPRESENTATION

This section describes the representation for co-occurrence of
multiple rectangle features. We use rectangle features because
they can be computed in constant time at any scale or location.

A. Rectangle Features

Rectangle features have scalar values that represent differences
in average intensities between adjacent rectangular regions. They
can extract texture information without depending on absolute
intensities. They are not too much affected by noise which arises
while capturing images or transmission of image signals because
they include multiple pixels.

They capture the intensity gradient at different locations, spatial
frequencies and directions by changing the position, size,shape
and arrangement of rectangular regions exhaustively according to
the base resolution of the classifier. For example, when the reso-
lution is 25× 25 pixels, 239,408 feature candidates are generated
from the feature set (a) to (d) in Figure 1. For each candidate, a
one-dimensional probability density is calculated from all training
samples as shown in Figure 3. The two curves show the densities
from the object and non-object class. In [7], a weak learningal-
gorithm is designed to select the single feature that best separates
the classes with a threshold. A small number of discriminative
features is selected by updating the sample distribution using
AdaBoost. However, as mentioned above, the error rate of the
weak classifiers selected at later stages of the boosting process
becomes large because the updated sample distribution consists
of many difficult samples, which are similar to each other. Even
the best feature selected from 239,408 candidates cannot provide
good classification performance. Figure 4 shows the performance
of Viola and Jones’ face detector. The training error (errorrate
measured on the training samples) and the generalization error
(error rate measured on test samples) are plotted against the
number of weak classifiers. The training error converges to zero
when the number of features reaches about 500. However, the
generalization error is no longer reduced after 1,000 features are
selected. This means that no discriminative features remain in
the pool of candidates and that further improvement cannot be
expected. Wu et al. [9] divide the range of the feature valuesinto
64 partitions to increase the classification power. However, the
above problem still remains when two class distributions overlap.

B. Feature Value Quantization

To improve the generalization performance we use weak clas-
sifiers that include multiple features simultaneously. Feature co-
occurrence makes it possible to classify difficult samples that
are misclassified by weak classifiers using a single feature.We
represent the statistics of feature co-occurrence by usingtheir
joint probability. To calculate the joint probability we quantize
the feature valuez to two levels. By doing so, each feature value
is represented by a binary variables, which is 1 or 0, specifying
object or non-object, respectively. The variables for a samplex
is calculated by,

s(x) =

{

1 p · z(x) > p · θ
0 otherwise

, (1)

whereθ is a threshold andp is a parity indicating the direction
of the inequality sign. The values ofθ and p are determined so
that the error rate is minimized. This binarization rule is the same
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Fig. 3. An example of feature value distributions. A weak learning algorithm
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Fig. 4. Performance of Viola and Jones’ face detector. The training error
converges to zero, but the generalization error is no longerreduced after
1,000 features are selected. This means that no discriminative features remain
in the candidate pool and that further improvement cannot beexpected. Any
sophisticated learning algorithm will encounter this problem if weak classifiers
depending on only one feature are used.

as for Viola and Jones’ weak classifiers. In order to confirm the
effectiveness of exploiting feature co-occurrence, we do not use
any operations different from Viola and Jones’ framework except
for combining multiple features. The proposed framework isnot
limited to the case of using binarized feature values. Multi-level
quantization of the feature value fits more complex distributions
than binarization. However, in this paper we do not focus on how
many levels are appropriate.

One advantage provided by the binarization is robustness
toward image noise and change in illumination. For example,the
variables is invariant to changes in illumination that do not invert
the inequality sign in (1).

C. Co-occurrence of Multiple Rectangle Features

The feature co-occurrence is represented by combining the
binary variables computed from multiple features. Figure 5shows
an example of the co-occurrence of three rectangle features. When
the variables are 1, 0 and 1, the value of the combined features
is calculated by

J (x) = (101)2 = 5

Fig. 5. An example of feature co-occurrence representation. Three binary
variables measured from three rectangle features are combined.

J(x) = (101)2 = 5. (2)

The valueJ(x) as a binary number specifies an index for2F

different combinations, whereF is the number of combined
features.

For each class statistical dependencies between the features
are obtained by observingJ(xi) for each training samplexi.
We use such dependencies for classification. The input pattern
is classified to be an object or non-object by evaluating from
which class the feature co-occurrence is likely to be observed. The
combined features are selected to capture discriminative structural
similarities of the samples which belong to the object class.
In the next section, we will show the algorithm for selecting
discriminative feature co-occurrences.

III. SELECTING DISCRIMINATIVE FEATURE

CO-OCCURRENCES USINGSEQUENTIAL FORWARD

SELECTION AND BOOSTING

This section describes an algorithm for constructing a classi-
fier for object detection by selecting discriminative feature co-
occurrences. First, we define weak classifiers based on the co-
occurrence of multiple features. Second, we describe a learning
procedure based on stagewise selection of effective weak clas-
sifiers by boosting. Then we explain how discriminative feature
combinations are found automatically. Two different versions of
boosting algorithms are incorporated into the proposed frame-
work: standard AdaBoost [13] and Real AdaBoost [8]. Other
boosting algorithms such as LogitBoost [14] could be used
instead. The standard AdaBoost algorithm is described as DAB
(Discrete AdaBoost) to distinguish it from RAB (Real AdaBoost).

A. Weak Classifiers

This section defines weak classifiers based on feature co-
occurrence.

First, we formulate these classifiers for Discrete AdaBoost. A
function Jt(x) represents an observation operation of feature co-
occurrence from a sample imagex in a weak classifierht(x).
When Jt(x) = j, based on the Bayesian decision rule, the
classifierht(x) is written as:

ht(x) =

{

+1 Pt(y = +1|j) > Pt(y = −1|j)

−1 otherwise
, (3)

where y ∈ {+1,−1} is the class label andPt(y = +1|j) and
Pt(y = −1|j) are class conditional probabilities of observing
feature co-occurrencej from object (positive) and non-object
(negative) classes respectively. They also represent joint prob-
abilities of observing multiple feature combinations. They are
evaluated with respect to the sample distributionDt as follows:
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Fig. 6. A weak classifier based on class-conditional joint probabilities.
Pt(y = +1|j) andPt(y = −1|j) are obtained from three rectangle features.
The three features yield eight combinations of binary variables. An input
pattern is classified to be an object ifj = (011)2 , (101)2 or (111)2 .

Pt(y = +1|j) =
∑

i:Jt(xi)=j∧yi=+1

Dt(i), (4)

Pt(y = −1|j) =
∑

i:Jt(xi)=j∧yi=−1

Dt(i), (5)

where xi is a sample image,yi ∈ {+1,−1} and Dt(i) are the
class label and the weight of the sample, respectively. Details are
described in the next section.

An example of the probabilitiesPt(y = +1|j) and Pt(y =

−1|j) obtained from three rectangle features is shown in Figure 6.
The three features yield eight combinations of binary variables,
which are from(000)2 to (111)2. If j = (011)2 = 3, (101)2 = 5

or (111)2 = 7 is measured from an input image, the input pattern
is classified to be an object. If any other feature value is observed,
it is classified as non-object.

Weak classifiers for Real AdaBoost are defined as follows:

ht(x) =
1

2
log

P (y = +1|j)

P (y = −1|j)
. (6)

It may well happen thatPt(y = −1|j) is very small or zero,
in which caseht(x) will be infinite. To avoid this, we adopt the
smoothing technique proposed in [8]:

ht(x) =
1

2
log

P (y = +1|j) + ν

P (y = −1|j) + ν
, (7)

whereν is a small positive value. We setν to 1/N , whereN is
the number of training samples.

The weak classifiers for RAB return confidence scores which
estimate the reliability of each of their predictions instead of
binary values in (3) which indicate class labels as the classification
results. The confidence scores evaluate differences between two
probabilities. If the differences are large (which meansj is dis-
criminative), the scores become large and classification becomes
more reliable. The weak classifier for DAB defined by (3) just
compares the probabilities and determines which is larger.RAB
improves the performance over DAB. We confirm this in the
experiments carried out in Section IV-E.

1. Prepare a set ofN labeled samples as
(xi, yi), · · ·, (xN , yN ). yi ∈ {+1,−1} is the
class label associated with the sample image
xi.

2. Initialize weightsD1(i) =
1

N
.

3. For t = 1, ..., T :
(A) For each feature, calculate a feature value.
(B) Binarize each feature value and assign a

binary variable according to Eq.(1).
(C) Train a weak classifier based on a

combination of features.
(D) Chooseht(x) with the lowest errorǫt.

The error is evaluated with respect to the
sample weightDt(i),
ǫt =

∑

i:yi 6=ht(xi)

Dt(i).

(E) Update the weights:

Dt+1(i) =
Dt(i) exp (−yiαtht(xi))
∑

i
Dt(i) exp (−yiαtht(xi))

,

whereαt =
1

2
log
(

1 − ǫt

ǫt

)

.

End For
4. Output the final strong classifier:

H(x) = sign

(

T
∑

t=1

αtht(x)

)

.

Fig. 7. Learning procedure based on DAB.

B. Learning Procedure based on Discrete AdaBoost (DAB)

The procedure for selecting features using DAB is shown
in Figure 7. A set ofN labeled training samples is given as
(x1, y1), . . . , (xN , yN ), where yi ∈ {+1,−1} is the class label
associated with a samplexi. Dt(i) is a weight of a samplexi. The
weights are initialized byD1(i) = 1/N . The final strong classifier
H(x) is a linear combination ofT weak classifiersht(x):

H(x) = sign

(

T
∑

t=1

αtht(x)

)

, (8)

where αt are obtained from the error of each weak classifier
weighted byDt. At each stage of the boosting process, the best
feature co-occurrence is selected according to steps (A) to(E) in
Figure 7.

C. Learning Procedure based on Real AdaBoost (RAB)

Figure 8 shows the procedure for feature co-occurrence selec-
tion based on RAB. One difference from the procedure based on
DAB is the criterion used for choosing weak classifiers in step
(D). The criterion used in RAB is the Bhattacharyya boundZt on
the sample distributionDt, whereas that for DAB is an error rate
ǫt. Another difference is the definition of the weak classifiersas in
(3) and (7). The weak classifiers for RAB calculate the confidence
scores and the reliability coefficientsαt for the weak classifiers
are omitted from the final strong classifier.

D. Searching for Discriminative Feature Co-occurrence

To construct a weak classifier, we need to find discriminative
feature co-occurrence. The best feature combination can befound
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1. Prepare a set ofN labeled samples as
(xi, yi), · · ·, (xN , yN ). yi ∈ {+1,−1} is the
class label associated with the sample image
xi.

2. Initialize weightsD1(i) =
1

N
.

3. For t = 1, ..., T :
(A) For each feature, calculate a feature value.
(B) Binarize each feature value and assign a

binary variable according to Eq.(1).
(C) Train a weak classifier based on a

combination of features.
(D) Chooseht(x) with the lowest

Bhattacharyya boundZt:
Zt = 2

∑

j

√

P (y = +1|j)P (y = −1|j).

P (y = +1|j) andP (y = −1|j) are
calculated by Eq.(4) and (5), respectively.

(E) Update the weights:

Dt+1(i) =
Dt(i) exp (−yiht(xi))
∑

i
Dt(i) exp (−yiht(xi))

.

End For
4. Output the final strong classifier:

H(x) = sign

(

T
∑

t=1

ht(x)

)

.

Fig. 8. Learning procedure based on RAB.

by exhaustive search from all possible feature combinations.
However, because the computational cost increases exponentially
with the number of feature candidates, this is usually impractical.
The computational complexity for selectingF from M feature
candidates isO(MF ). Branch-and-bound algorithms [28] can find
the optimal solution more efficiently. However, when the number
of feature candidates is very large, the worst case complexity
is exponential. Furthermore, they require the feature selection
criterion function to be monotonic, which cannot be satisfied in all
cases. Several solutions for efficient feature selection have been
proposed, but without a guarantee for optimal selection [27]. The
best-known methods are Sequential Forward Selection (SFS)and
Sequential Backward Selection (SBS). SFS is a greedy approach
starting with the best feature and adding other features oneby one
that satisfy a predetermined criterion. In contrast, SBS starts with
all features as an initial subset and decreases it one by one.The
Plus-l-Minus-r method [29] combines SFS and SBS, first adding
l features to the subset using SFS and then deletingr using SBS.
Sequential Forward Floating Selection (SFFS) and Sequential
Backward Floating Selection (SBFS) [30] are generalizations of
the Plus-l-Minus-r method, which automatically determine the
values of l and r. Pudil at al. [30] compared these sequential
methods and reported SFFS was performing best among them. In
this paper, we use SFS because of its simple implementation.SFS
adds features one by one to improve the classification accuracy.
The accuracy is evaluated byǫt for DAB or Zt for RAB. The
computational complexity becomesO(FM). Pseudo-code for
training weak classifiers based on SFS is shown in Figure 9.

How we determine the number of selected featuresF is also
important. ChoosingF too large leads to overfitting. Furthermore,
the range ofj doubles with each added feature. To avoid statistical

1. Initialize a feature subset:S0 = ∅.
2. For i = 1, ..., F :

For j = 1, ..., NumOfFeatureCandidates:
(A) Generate a weak classifier by

combiningSi−1 with one featurefj .
(B) Evaluate accuracy of the weak

classifier by a criterion function
G(Si−1 ∪ fj). G is evaluated by
ǫt for DAB or Zt for RAB.

End For
Select the best featuref∗:

f∗ = arg min
j

G(Si−1 ∪ fj).

Add it to the subset:
Si = Si−1 ∪ f∗.

End For
3. Output the weak classifier with the subsetSF .

Fig. 9. Pseudo-code for training weak classifiers based on SFS. F features
are selected through this procedure.

unreliability due to large histograms we limitF by,

2F max

× 10 < N, (9)

so that at least 10 samples fall into each bin when eachj is
uniformly observed.

The following two methods for determiningF are considered:
(1) Select the best strong classifier from several classifiers trained
using different values forF . Since a fixedF is used for each
classifier, all weak classifiers observe the same number of fea-
tures. The computational complexity for constructing eachstrong
classifier is equivalent to that of Viola and Jones’ framework.
Therefore, the total cost for choosing the best classifier increases
linearly according to the number ofF settings.
(2) Choose the bestFt for each weak classifierht. The leave-one-
out method or the bootstrap method can be used for the choice of
Ft. However, in both cases training is expensive because repeated
training and testing is required for estimatingFt. Here, we use
the hold-out method, in which a set of samples is extracted from
the training samples for validation. Each weak classifier tries to
find the best number of combined features by incrementingFt

from 1 to Fmax, so that the lossLT ′ calculated on the validation
samples is minimized:

Ft = arg min
F

LT ′ . (10)

The total cost for training the final strong classifier becomes
Fmax times larger than Viola and Jones’ framework.

In order to reduce the time for training,Ft can be determined
whenLT ′ starts to increase before reachingFmax. In this case,
Ft + 1 features need to be evaluated. The total cost for training
becomes twice as high compared to Viola and Jones’ framework
in the worst case, where every weak classifier evaluates combi-
nations of two features but chooses only one feature in the end.

LT ′ is defined as an exponential loss on the validation samples
because the margin from the classification boundary can be
considered by using the exponential loss instead of using anerror
rate. A set ofN ′ labeled validation samples(x′

i, y
′
i) is used for
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calculatingLT ′ by

LT ′ =
1

N ′

N ′

∑

i=1

exp
(

−y′iHT ′(x′
i)
)

, (11)

whereHT ′(x) is a strong classifier att = T ′. It is represented as
follows:

HT ′(x) = sign





T ′

∑

t=1

αtht(x)



 , (12)

wherehT ′ is a weak classifier which is trained.
The first feature selected by the proposed framework combining

SFS and DAB is the same as the one selected by Viola and Jones’
framework. Other features may be different except for the worst
case mentioned above, where all weak classifiers choose onlyone
feature.

The hold-out method for choosing the number of features is
applicable to training a cascade of classifiers using a slightly
modified version of the algorithm in [7]. The training algorithm in
[7] iterates adding one feature and evaluating the current classifier
on the validation set in order to adjust the threshold. When
the classifier satisfies the predetermined performance goal, e.g.
a minimum detection rate and a maximum false positive rate,
negative samples, which are classified to be positive by the current
cascade, are collected for training the next classifier. Instead of
adding one feature only by boosting, we use SFS or boosting.
Features are added by SFS as long as the loss defined above on
the validation set continues to decrease. Otherwise, features are
added by boosting. The validation set, which is regarded as a
hold-out set, can be commonly used for threshold adjustmentand
choosing the number of features.

E. Discussion

This section distinguishes our framework from previous ap-
proaches that utilize co-occurrence of multiple features.

The Local Binary Pattern (LBP) representation proposed by
Hadid et al. [15] can express primitive features such as edges
or corner points by comparing intensities between a target
pixel and peripheral pixels. This approach uses co-occurrence
of neighboring pixel pairs. However, only a limited number of
feature combinations are evaluated. Our framework is able to use
additional co-occurrences, which cannot be represented bythese
features by searching feature combinations at each stage ofthe
boosting process.

Schneiderman and Kanade [6] learned the appearance of ob-
jects by evaluating dependencies between wavelet coefficients.
Their face detector has one of the best reported detection per-
formances [16]. However, it does not run in real-time since a
large set of feature combinations given in advance is used for
evaluating joint statistics. Our framework automaticallyselects a
small number of discriminative feature combinations.

Template matching or PCA [17] based weak classifiers can
also be incorporated into Viola and Jones’ framework instead of
using rectangle features, thus including spatial structure. Zhang
et al. [18] select rectangle features at early stages of the boosting
process and select the best eigenvector in later stages to improve
accuracy. However, it is necessary to determine the switching
stage based on the trade-off between speed and accuracy improve-
ment because the computational cost of the PCA-based weak
classifiers is larger than that of weak classifiers based on the

Fist Open PointFace

Fig. 10. Typical training samples. Top: positive samples, bottom: negative
samples. The negative data includes difficult samples whichare similar to the
positive samples obtained during the bootstrapping process.

rectangle features. In contrast, our framework does not increase
the computational cost, whereas the accuracy is improved. Fur-
thermore, their PCA-based weak classifiers use raw pixel data
and are thus affected by changes in illumination which are not
included in the training samples.

IV. EXPERIMENTAL RESULTS

A. Data Collection

Figure 10 shows typical samples used in the experiments.
We train four classifiers for detecting faces and hands in three
different poses, respectively.

First, we explain how positive samples of the target objects
were collected. Face samples were collected by extracting 10,000
images randomly from well-known public databases, which are
AT&T [19], FERET [20], CMU-PIE [21], XM2VTS [23] and
Yale [22]. Only frontal upright faces are selected from the
databases. The face samples do not include pose variation but
a variety of illumination conditions. The locations of pupils and
nostrils are marked manually, and based on these points the face
regions are aligned and scaled to a base resolution of25 × 25

pixels. For hand data collection, we took video sequences in
which people make three different hand gestures, which are called
Fist (hand upright with curled fingers facing the camera), Open
(open hand facing the camera) and Point (pointing toward the
camera with the index finger) in this paper. The video sequences
were taken in different illumination conditions. Top and bottom
corners of hands are marked manually, and 5,000 hand samples
are resized to25 × 25 pixels. Each pose includes both left and
right hands.

Next, we describe how negative samples were collected. We
collected more than 8,000 images from the Web that do not
contain any of the objects of interest. Each image was partitioned
into patches of size25× 25 pixels and selected randomly so that
the number of initial negative samples became 40% of the positive
samples. There are 4,000 negative samples for the face classifier
and 2,000 for the hand classifiers. Using this data, we trained
Viola and Jones’ classifiers. We added 2,000 non-face imagesand
1,000 non-hand images misclassified by these classifiers to the
initial negative samples. We trained Viola and Jones’ classifiers
again using the updated data and collected misclassified samples
until the number of negative and positive samples were equal.
These bootstrapping [1] iterations were repeated three times in
total. As a result many difficult negative samples similar tothe
positive samples were collected as shown in Figure 10.
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TABLE I

FOUR CLASSIFIERS COMPARED IN THE FIRST EXPERIMENT. F IS THE

NUMBER OF FEATURES USED IN EACH WEAK CLASSIFIER. T IS THE

NUMBER OF WEAK CLASSIFIERS. THEREFORE, THE TOTAL NUMBER OF

FEATURES FOR EACH STRONG CLASSIFIER IS CALCULATED BYF × T .

THE NUMBER OF WEAK CLASSIFIERS AND THE TOTAL NUMBER OF

FEATURES ARE THE SAME ONLY INF1, V IOLA AND JONES’ CLASSIFIER.

THE BOOSTING ITERATIONS ARE STOPPED WHEN THE TOTAL NUMBER OF

SELECTED FEATURES REACHES1,000.

Classifiers F T Total number of features
F1 1 1,000 1,000
F3 3 333 999
F5 5 200 1,000
F7 7 142 994

B. Performance Evaluation by Cross Validation

We adopt 10-fold cross validation for performance evaluation.
The samples are partitioned into ten sets. Nine sets are usedfor
training and the trained classifier is tested on the remaining set.
The average error rate is calculated by repeating training and
testing ten times on different combinations of sample sets.Error
rates are calculated by counting the number of misclassifications.

C. Experiment (1): Performance Comparison between Classifiers
Based on DAB

For each object four classifiers with different training parame-
ters shown in Table I are trained using DAB and the basic feature
set shown in Figure 1 (a).F1 indicates a classifier trained by
Viola and Jones’ framework and it is restricted to using a single
feature for each weak classifier. The classifiersF3, F5 and F7

are trained by the proposed framework combining three, five and
seven features, respectively, in each weak classifier. All weak
classifiers use a predetermined number of features. An evaluation
of choosing the number of features automatically is carriedout
in Experiment (2) described in the next section.

Figure 11 shows features selected forF1 and F3. Three
features selected at the beginning of the boosting process are
shown in (b), (c) and (d). Average images of object classes at
sample distributionDt are shown in (a). Thek-th pixel value in
the average imagemt is calculated by

mt,k =
∑

i

Dt(i)xk(i), (13)

wherexk(i) is thek-th pixel value in thei-th sample image. The
first feature is the same forF1 and F3, but the second and the
third feature are different. This result is to be expected according
to the algorithm shown above. The target objects have different
structure and important features selected for classification are
different from each other. For example, facial parts are important
for detecting faces but silhouette information is more important
for open hands. Error rates are also shown in the figure. The error
rates ofF3 are smaller than those ofF1. This means that the co-
occurrence of three features yields higher accuracy than the three
features selected sequentially through the boosting process.

Figure 13 illustrates four error curves for each of the four
objects. Error rates calculated by 10-fold cross validation are
plotted against the number of features used for classification. The
number of features is equivalent to the computational cost for
classification when the basic feature set is used. All classifiers

h1(x)

h2(x)

h3(x)

h1(x)

F1

F3

Face Fist Open Point

Error 0.190.230.180.14

0.220.260.230.16Error

(a) (d)(c)(b)

Fig. 11. Training results and error rates. The first three features selected for
F1 (Viola and Jones’) andF3 (ours) are shown. The first feature is the same
but the subsequent features are different.F3 has a lower error rate thanF1.

TABLE II

COMPUTING TIMES OF THE FOUR CLASSIFIERS. AVERAGE TIME FOR

CLASSIFYING ONE SAMPLE WERE MEASURED ON ANINTEL XEON 3.2

GHZ PROCESSOR.

Classifiers Total number of features Seconds per sample
F1 1,000 0.000259
F3 999 0.000226
F5 1,000 0.000223
F7 994 0.000220

based on the proposed framework show smaller error rates than
those ofF1. Comparing the lowest error rates ofF1 andF3, the
error is reduced by about 30 to 50%. The error rates ofF5 and
F7 is higher than that ofF3. This means thatF5 andF7 overfit
the training data because it combines many features in each weak
classifier. Choosing the appropriate number of featuresF is thus
important for improving the performance.

Table II shows the computing times of the four classifiersF1

to F7. Average classification times of one sample were measured
on an Intel Xeon 3.2 GHz processor. The results are comparable.
The methods using multiple features are slightly faster than F1.
This is because the number of weak classifiers is smaller than
that of F1 and thus the number ofαt terms is smaller.

To confirm the differences between the three frameworks
explained in Figure 2, we carried out an additional experiment
shown in Table III. The error rates of three classifiers, which
consist of 15 features but combine them in different ways,
are compared.F1 was trained according to Viola and Jones’
framework, i.e., each weak classifier uses a single feature.F15

consists of only one weak classifier which combines 15 features
by SFS.F3 was trained by our framework, which assigned three
features for each of five weak classifiers.F15 yields the worst
error rates because it overfits the training data and decreases
statistical reliability due to combining too many features. F3

outperforms other classifiers.

In the subsequent experiments we compareF1 only with F3

becauseF3 has the lowest error rate among our three classifiers.
Furthermore, we show that the proposed framework achieves
higher performance when RAB is used for training instead of
DAB and when the extended feature set is incorporated instead
of the basic feature set. The final experiment evaluates robustness
against occlusions.
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TABLE III

ERROR RATE COMPARISON BETWEEN THREE CLASSIFIERS. EACH

CLASSIFIER CONSISTS OF15 FEATURES BUT WAS TRAINED IN DIFFERENT

WAYS. WEAK CLASSIFIERS OFF1 DEPEND ON A SINGLE FEATURE. IT

USES A SINGLE FEATURE FOR EACH OF15 WEAK CLASSIFIERS. IN

CONTRAST, F15 USES15 FEATURES FOR ONLY ONE WEAK CLASSIFIER.

F3 WAS TRAINED BY OUR FRAMEWORK, WHICH ASSIGNED THREE

FEATURES FOR EACH OF FIVE WEAK CLASSIFIERS. F15 YIELDS THE

WORST ERROR RATES BECAUSE OF OVERFITTING. ERROR RATES OFF3

ARE THE SMALLEST.

Classifiers F T Face Fist Open Point
F1 1 15 0.10 0.18 0.22 0.17
F15 15 1 0.12 0.19 0.24 0.21
F3 3 5 0.07 0.12 0.18 0.12

D. Experiment (2): Choosing the Number of Combined Features

In this experiment performances of three classifiers,F1, F3

andH are compared.F1 andF3 use a fixed number of features
in each weak classifier. The classifierH automatically chooses
the number of features using the hold-out method explained in
Section III-D. The number of features is increased until the
validation loss starts to increase or until reachingFmax = 7.
Unlike other experiments, we cannot use 10-fold cross validation
here because the number of features would be different for each
weak classifier of the ten classifiers. We trained classifiersusing
four data sets out of ten and another two sets as the hold-out
data for choosing the number of features. The classifiers were
tested on the remaining four sets. For example, face classifiers
were trained using 4,000 training samples and 2,000 hold-out
samples and they were tested on the remaining 4,000 samples.
For three hand classifiers, 2,000, 1,000 and 2,000 were assigned,
respectively. All classifiers are based on DAB.

Figure 14 shows that the error rates ofH andF3 are compara-
ble and smaller than those ofF1. We can conclude that choosing
the number of features by the hold-out method is an effectiveway
of improving the performance overF1.

E. Experiment (3): Performance Comparison between Classifiers
Based on RAB

Figure 15 shows error rates of classifiers trained using RAB
instead of DAB. Our classifierF3 consistently achieves smaller
error rates thanF1. This means that the proposed framework is
still effective when a different version of the boosting algorithm
is incorporated. Comparing Figure 13 with Figure 15, classifiers
based on RAB perform better than those based on DAB.

F. Experiment (4): Performance Comparison between Classifiers
Based on DAB with the Extended Feature Set

Figure 16 illustrates error rates of classifiers based on DAB
using the extended feature set shown in Figure 1 (a) to (d) instead
of the basic feature set, only (a). Note that the computational
cost is not always equivalent to the number of features in this
case, whereas they are the same when using the basic feature
set. Our classifierF3 shows smaller error rates than those of
F1. This means that the proposed framework is effective when
the feature set is extended manually. Comparing Figure 13 with
Figure 16, classification performance is greatly improved by using
the extended feature set. Manual extension of the feature set is

Fist Open PointFace

Fig. 12. Test samples partially occluded by random patterns. Top: positive
samples, bottom: negative samples.

an effective way to construct a good classifier. Our framework
further improves the performance.

G. Experiment (5): Performance Comparison between Classifiers
Based on RAB with the Extended Feature Set

Figure 17 illustrates error rates of classifiers based on RAB
using the extended feature set. Our classifierF3 shows smaller
error rates than those ofF1.

H. Experiment (6): Evaluating Robustness against Occlusions

In this experiment robustness against occlusions is evaluated.
The proposed method can be seen as using stronger spatial
constraints for building weak classifiers compared to Violaand
Jones’ method. This brings up the question of whether we lose
robustness towards occlusion. Again, the two classifiersF1 and
F3 are compared. The classifiers are the same as those used in
Experiment (5), which are trained with RAB on the extended
feature set. The test samples are different from Experiment(5).
As shown in Figure 12, they are partially occluded by random
patterns. The size of the occluded areas is8 × 25 pixels. About
one third of the area of each sample is occluded. The intensity of
each pixel in the occluding patterns is set by sampling a uniform
distribution between 0 and 255. Figure 18 shows the error rates of
F1 and F3. In this experiment the proposed method is not less
robust towards occlusions. The performance against occlusions
depends on the occluding patterns, the position and the sizeof
the occluded areas and the target objects.
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Fig. 13. Experiment (1): performance comparison of classifiers based on DAB. Top-left: performances of the Face detector, top-right: Fist, bottom-left: Open,
bottom-right: Point.
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Fig. 14. Experiment (2): performance comparison of classifiers trained by the hold-out method. The number of features used in each weak classifier is
automatically determined.
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Fig. 15. Experiment (3): performance comparison of classifiers based on RAB.
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Fig. 16. Experiment (4): performance comparison of classifiers based on DAB with the extended feature set.
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Fig. 17. Experiment (5): performance comparison of classifiers based on RAB with the extended feature set.
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V. CONCLUSION

We have proposed a new framework for object detection.
Experimental results show that the proposed framework yields
higher performance than Viola and Jones’ framework. The main
advantages of the new framework are summarized as follows:

• It improves the classification power by incorporating co-
occurrence of multiple features at the same computational
cost. Alternatively, comparable accuracy is achieved at
smaller computational cost.

• Co-occurrence of multiple features is expected to be useful
for various kinds of objects because every object category
exhibits some spatial structure.

• Different versions of boosting algorithms such as Real
AdaBoost can be integrated with the proposed framework.
Extensions of feature spaces can also be combined, possibly
further improving the classification performance.

In this paper, we used only intensity gradient information
extracted by rectangle features. In the future, we propose to
investigate the integration of Gabor features or rectanglefeatures
in different feature spaces such as color or motion. The proposed
framework could also be extended to multi-class object detection.
Torralba et al. [31] proposed the idea of sharing features among
multiple classes. Huang et al. [32] proposed the Vector Boosting
algorithm which efficiently detects multiple object classes. We
think that the proposed framework is applicable to these methods
if there exist discriminative feature co-occurrences which can be
shared among multiple classes.
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