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Discriminative Feature Co-occurrence Selection
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Feature co-occurrences are automatically found by Sequeiat
Forward Selection at each stage of the boosting process. The
selected feature co-occurrences are capable of extractirgruc- (a) (b)

tural similarities of target objects leading to better performance.

The proposed. method is a generalization of the .f.ramework Fig. 1. Examples of rectangle feature sets. Basic featuréayeonsists of
proposed by Viola and Jones, where each weak classifier des only two-rectangle features. Extended feature sets (ajl)tantlude features

only on a single feature. Experimental results obtained usig it different numbers and arrangements of rectangles.
four object detectors, for finding faces and three differenthand

poses, respectively, show that detectors trained with therpposed

algorithm vyield consistently higher detection rates than hose .
based on their framework while using the same number of different arrangements or numbers of rectangles such ato(b)

features. (d) are used in [7], [9]. Lienhart et al. [12] introduced an
efficient scheme for calculating features rotated4b§. Kolsch
and Turk [25] added new types of rectangle features for tobus
hand detection. Viola et al. incorporated motion informatin
addition to appearance into pedestrian detection [26JhcAigh

|. INTRODUCTION both extensions are effective, they are insufficient to echi

. more accurate object detection. Most of these methods rcmhst
HIS paper presents a new method for constructing accurate

and efficient classifiers for detecting objects in images. weak classifier by selecting only qne_feature from the given
fective object detection techniques have been developesecient eature_ pool. However, the generallzauo_n performance as n
years that solve a two-class problem by using a probabilisﬂonge.r.'mproved atlat_erstag_es of the boosting processubedae_
framework or by finding a discriminant function from a larg classification task using a single feature becomes moreuliffi
set of training samples. For example, neural network-bd iola and Jones reported that features which were seletiatea
detectors were used in [1], [2], classification boundarie=ew stages ylglded error rates between 0.4 and 0.5, whereasdsat
learned by support vector machines in [3], [4], [5] and aistiatl selected in early stages had error rates between 0.1 and@]0.3 [
method based on the naive Bayes cla,ssifi'er was propose uch ‘too weak’ classifiers do not contribute to improving the

. generalization performance, although they can reducedigrig

[6]. Some of these methods use raw pixel values as features, o . ) . .
However, they are sensitive to the addition of noise and gham error. Any sophlstlcatet_:l boostm_g algorithm will enCOL.mtb'S .
illumination. Haar wavelet features [5] and rectangle deas [7], pmb'e”.‘~ .However, taking the S|mplgst approach .by INCreas
which extract local gradient, and Gabor features, whiciosd the variation of rectangle features or including additidieature

. L . ) . spaces leads to prohibitively expensive training. It i® alficult
to particular directions and spatial frequencies of textincrease S .
. to create new discriminative feature sets manually acogrdid
the robustness against such effects. Viola and Jones [pppeal - X
; Coo . each object of interest.
a framework for selecting discriminative features andnireg . . .
o , : . In this paper, we propose an object detection framework that
classifiers using AdaBoost [13], showing that good clas#ifin . . . .
cdueves higher accuracy at lower computational cost bgrinc

erformance can be achieved by a small number of selecfad <. .
P Y orating the co-occurrence of multiple features at eachestd

features at much reduced computational cost. Their approag1e boosting process. In the proposed framework, disceitive

which selects only discriminative features using boosfiregn feature co-occurrences are automatically found by Segplent

a huge feature pool, has become a general framework fortobjec . "
g. pool, . 9 JE rward Selection and weak classifiers based on the bestrdeat
detection and several extensions have been proposed. We wi

introduce two of them and then point out problems of thege-oceurrences are added through the. boosting process. Fig
. . . ure 2 compares three methods for learning face detectoexibas
approaches. The first extension is an improvement of thetipgos ) . ,
. . - . on rectangle features: (a) Viola and Jones’ framework, (b) a
algorithm itself. There are modified versions of AdaBoosthsu .
. conventional framework and (c) the proposed framework. The
as Real AdaBoost [8], KLBoosting [10] and FloatBoost [11] - .
- - ramework (b) constructs a classifier by only selecting duiea
FloatBoost was applied not only to face detection but also % occurrence without using boosting. In this paper. wearg
hand detection [24]. The second extension is to use an esden u without using Ing. IS paper, w 9

. . it as a conventional framework. In our framework (c), the Ifina
set of features such that various image patterns can beagedlu . . : - s
- . I . trong classifie (z) is a linear combination of weak classifiers
As shown in Figure 1, in addition to the basic feature set (a),
1(z) to hp(z). In contrast to the framework (a), each weak

Manuscript received October 26, 2006; revised June 19,.2007 classifier of the proposed framework consists of multipkedees.
T. Mita is with Toshiba Corporation. For example,hi(z) observesF features simultaneously and

Abstract— This paper describes an object detection framework
that learns the discriminative co-occurrence of multiple Batures. ; I:- H B i:l
- Y
() (d)

Index Terms— Object detection, Co-occurrence, Boosting, Fea-
ture selection.
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Feature co-occurrence selection

Il. FEATURE CO-OCCURRENCEREPRESENTATION

" i__" i__"--- a1 B "__i " § = This section describes the representation for co-occeeref

multiple rectangle features. We use rectangle featureausec
they can be computed in constant time at any scale or location

Boosting

-
h() |l A. Rectangle Features
It
Rectangle features have scalar values that representedidtes
//(x):sign[ia,h,mj in average intensities between adjacent rectangularnegithey
can extract texture information without depending on alisol
(a) Viola and Jones’ framework (b) Conventional framework intensities. They are not too much affected by noise whickear

while capturing images or transmission of image signalabse
they include multiple pixels.
Feature co-occurrence selection They capture the intensity gradient at different locatjamstial

F F—"' F—'_l frequencies and directions by changing the position, shape
a o | ] ™ I [

and arrangement of rectangular regions exhaustively dtapto
the base resolution of the classifier. For example, whendbke-r
Boosting : lution is 25 x 25 pixels, 239,408 feature candidates are generated
from the feature set (a) to (d) in Figure 1. For each candjdate
one-dimensional probability density is calculated frofrtralining
samples as shown in Figure 3. The two curves show the demsitie

211

Iy ()

H(X):l\,,.g,{'z(xh(x)} from the object and non-object class. In [7], a weak learrdhg
gorithm is designed to select the single feature that bgstrates
() The proposed framework the classes with a threshold. A small number of discrimieati

features is selected by updating the sample distributiangus
Fig. 2. Comparison of three frameworks: (a) Viola and Janés) a AdaBoost. However, as mentioned above, the error rate of the
conventional method of constructing a classifier by selectieature co- weak classifiers selected at later stages of the boostingegso
occurrence without boosting and (c) the proposed framewBdth (a) and becomes large because the updated sample distributionstsons
(b) can be regarded as special cases of the proposed fraknésyor of many difficult samples, which are similar to each othereitv

the best feature selected from 239,408 candidates canowtipr

good classification performance. Figure 4 shows the pedooa

of Viola and Jones’ face detector. The training error (eraie
evaluates joint statistics of these features. Structurallaities Measured on the training samples) and the generalization er
of faces, which cannot be evaluated using a single featuee, &170" rate measured on test samples) are plotted agaiest th
extracted fromz;; (eye regions are darker than neighboriné‘umber of weak classifiers. The training error convergeseto z
regions), z, ; (nostrils are dark) and, r (the region between when the r_lumber o_f features reaches about 500. However, the
the eyes is brighter than the eyes). These combined featnees 9eneralization error is no longer reduced after 1,000 featare
selected automatically. The combination of spatially sefel selected. This means that no dlscrlmlna_ltlve features rerimai
features as shown in Figure 2 cannot be found by the extendB8 Pool of candidates and that further improvement caneot b
feature set shown in Figure 1. From a different point of vidwe, €XPected. Wu et al. [9] divide the range of the feature vaints
proposed framework (c) can be understood as the geneiatiza®4 Partitions to increase the classification power. Howetrez
of (a) and (b) because they are special cases of the propo@@ﬁ"e problem still remains when two class distributionsriap.
framework. Our framework is a solution to the problem of how t
choose features in order to build a more accurate classifieout B. Feature Value Quantization

changing the total number of features, i.e. without indreaghe  To improve the generalization performance we use weak clas-
computational cost. sifiers that include multiple features simultaneously. tégaco-
ogcurrence makes it possible to classify difficult samplest t

In the experiments we compare the performance of seve . o o . .
s - . are misclassified by weak classifiers using a single feaitve.
classifiers, each corresponding to a frontal upright fadeater 2 .
represent the statistics of feature co-occurrence by uieg

and detectors for hands in three different poses. Perfaean " - . .
evaluation has been carried out by 10-fold cross validathom joint probability. To calculate the joint probability we aatize

- . . . . the feature value to two levels. By doing so, each feature value
experiment integrating Real AdaBoost [8] into our framekvior-

stead of standard AdaBoost [13] shows that further impramm 'S represented by a binary vgrlatﬂewhlch IS 1 or 0, specifying
object or non-object, respectively. The variabléor a samplex

is possible. is calculated by,

Section 1l shows how co-occurrences of multiple rectangle ) p
features are represented. Section Ill describes an digorior s(z) = { 0 7; t.héf)';ep o (1)
constructing an object detector by selecting discrimugateature Wi

co-occurrences by Sequential Forward Selection at eadfe stavheref is a threshold ang is a parity indicating the direction
of the boosting process. Experimental results are showre@m Sof the inequality sign. The values éfandp are determined so
tion IV. that the error rate is minimized. This binarization rulehis same
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threshold
non-object
~a Jx)=01):=35
object
Fig. 5. An example of feature co-occurrence representafitmee binary
variables measured from three rectangle features are oechbi

AVaa'd
L

Feature value : z

J(z) = (101) = 5. @)

The value.J(z) as a binary number specifies an index for

Fig. 3. An example of feature value distributions. A weakéag algorithm ~ different combinations, wherd” is the number of combined
is designed to select the single feature that best sepahateso classes with features.
a threshold. For each class statistical dependencies between the deatur
are obtained by observing(z;) for each training sample:;.
We use such dependencies for classification. The inputrpatte
is classified to be an object or non-object by evaluating from
which class the feature co-occurrence is likely to be oleskrvhe
o combined features are selected to capture discriminattivetaral
Generalization error similarities of the samples which belong to the object class

/ In the next section, we will show the algorithm for selecting
discriminative feature co-occurrences.

0.05 1

Error

Mu L

Training error I1l. SELECTING DISCRIMINATIVE FEATURE
// CO-OCCURRENCES USINGSEQUENTIAL FORWARD
SELECTION AND BOOSTING

This section describes an algorithm for constructing asélas
fier for object detection by selecting discriminative featuwo-
Number of weak classifiers occurrences. First, we define weak classifiers based on the co

occurrence of multiple features. Second, we describe aitegr

Fig. 4. Performance of Viola and Jones’ face detector. Thmitrg error pr(_)cedure basetd on stagewise Se!eCt'On OT eﬁeqt've. wegskc Cl

converges to zero, but the generalization error is no lomgduced after Sifiers by boosting. Then we explain how discriminative deat

1,000 features are selected. This means that no discriménfatures remain combinations are found automatically. Two different vensi of

in the candidate pool and that further improvement cannaéXpected. Any . . . :

sophisticated learning algorithm will encounter this peob if weak classifiers boosting algorithms are incorporated into the proposedhdra

depending on 0n|y one feature are used. WOI’kZ Standard AdaBOOSt [13] and Real AdaBOOSt [8] Othel’
boosting algorithms such as LogitBoost [14] could be used
instead. The standard AdaBoost algorithm is described aB DA

as for Viola and Jones’ weak classifiers. In order to confire ti{Discrete AdaBoost) to distinguish it from RAB (Real AdaBtjo

effectiveness of exploiting feature co-occurrence, we dbuse

any operations different from Viola and Jones’ frameworkept A. Weak Classifiers

for combining multiple features. The proposed frameworkds  Thjs section defines weak classifiers based on feature co-

limited to the case of using binarized feature values. Meltel  5ccyrrence.

quantization of the feature value fits more complex distiins  First, we formulate these classifiers for Discrete AdaBoAst

than binarization. However, in this paper we do not focus @ h fynction J; () represents an observation operation of feature co-

many levels are appropriate. occurrence from a sample imagein a weak classifiet; (z).

One advantage provided by the binarization is robustneggen Ji(z) = j, based on the Bayesian decision rule, the
toward image noise and change in illumination. For exantble, classifiers;(x) is written as:

variables is invariant to changes in illumination that do not invert
the inequality sign in (1).
ht (:E) = {

0 500 1000 1500 2000 2500

+1 Py =+1|j) > Py = —1]j) 3)

—1 otherwise ’

C. Co-occurrence of Multiple Rectangle Features wherey € {+1,—1} is the class label and(y = +1|j) and
The feature co-occurrence is represented by combining thgy = —1|j) are class conditional probabilities of observing

binary variables computed from multiple features. Figushéws feature co-occurrencg from object (positive) and non-object

an example of the co-occurrence of three rectangle featdfeen (negative) classes respectively. They also represent foivb-

the variables are 1, 0 and 1, the value of the combined featuebilities of observing multiple feature combinations. Y¥hare

is calculated by evaluated with respect to the sample distributionas follows:
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0.4 1. Prepare a set a¥ labeled samples as
(mi7yi)7 Tt (mNny) Yi € {+17 _1} is the
03 / class label associated with the sample image
Pi(y=—1})) P (y=+1})) Ti- , 1
2. Initialize weightsD; (i) = —.

\ N
0.2 / \A 3. Fort=1,..,T:
(A) For each feature, calculate a feature value.

0.1 AN (B) Binarize each feature value and assign| a
binary variable according to Eq.(1).
0 (C) Train a weak classifier based on a

combination of features.

(000), (001); (010), (011); (100), (101); (110), (111), (D) Chooseh;(z) with the lowest errok;.
. The error is evaluated with respect to the
J sample weightD;(7),

= Dii)

Fig. 6. A weak classifier based on class-conditional joimbpbilities. S (o)
Pi(y = +1|j) and P;(y = —1|j) are obtained from three rectangle features. t\Lq
The three features yield eight combinations of binary ‘#eis An input (E) Update the ngghts A
pattern is classified to be an objectjit= (011)2, (101)2 or (111)2. Dy (i) = +( )exp( yiothe(z;))
+1(? - N\
Z Dy (i) exp (—yioht ()

wherea; = log ( —

€t

End For
Py =+1]j) = Z Dy (3), (4) 4. Output the final strong classifier:
T
i (zi)=jAyi=+1 H(z) = sign <Z atht(m)>.
Ply=-1)= Y D), (5) =

wle@i)=iAyi=—1 Fig. 7. Learning procedure based on DAB.

where z; is a sample imagey; € {+1,—1} and D;(z) are the
class label and the weight of the sample, respectively.iBeiee

described in the next section. B. Learning Procedure based on Discrete AdaBoost (DAB)

An example of the probabilities:(y = +1|j) and P:(y = The procedure for selecting features using DAB is shown
—1|7) obtained from three rectangle features is shown in Figureif. Figure 7. A set of N labeled training samples is given as
The three features yield eight combinations of binary \@es, (z1,%1),-..,(zn,yn), Wherey; € {+1,—1} is the class label

which are from(000)3 to (111)s. If j = (011)2 = 3, (101)2 =5 assouated W|th a sample. D (i) is a weight of a sample;. The
or (111); = 7 is measured from an input image, the input patterweights are initialized by (i) = 1/N. The final strong classifier
is classified to be an object. If any other feature value ienkesl, H(z) is a linear combination of” weak classifiersy; (z):

it is classified as non-object.

. ' T
Weak classifiers for Real AdaBoost are defined as follows: H(z) = sign (Z atht(m)> 7 ®)
Py = +11j)
hi(x) = §1Ogm (6) where o, are obtained from the error of each weak classifier
weighted byD;. At each stage of the boosting process, the best
It may well happen thal;(y = —1|j) is very small or zero, feature co-occurrence is selected according to steps (AF)tin

in which caseh(z) will be infinite. To avoid this, we adopt the Figure 7.
smoothing technique proposed in [8]:

Ply=+1j) +v C. Learning Procedure based on Real AdaBoost (RAB)

1
ht(x) = §1Og Ply=—1j)+ ' (7)

Figure 8 shows the procedure for feature co-occurrence-sele
tion based on RAB. One difference from the procedure based on
DAB is the criterion used for choosing weak classifiers irpste
). The criterion used in RAB is the Bhattacharyya boufidon
e sample distributioD;, whereas that for DAB is an error rate
e¢. Another difference is the definition of the weak classifeessn
(3) and (7). The weak classifiers for RAB calculate the comifide
scores and the reliability coefficients for the weak classifiers
are omitted from the final strong classifier.

wherev is a small positive value. We setto 1/N, whereN is
the number of training samples.

The weak classifiers for RAB return confidence scores Whié
estimate the reliability of each of their predictions irsteof
binary values in (3) which indicate class labels as the iflaaon
results. The confidence scores evaluate differences betvee
probabilities. If the differences are large (which meanis dis-
criminative), the scores become large and classificaticorbes
more reliable. The weak classifier for DAB defined by (3) just
compares the probabilities and determines which is laiRaB D. Searching for Discriminative Feature Co-occurrence
improves the performance over DAB. We confirm this in the To construct a weak classifier, we need to find discriminative
experiments carried out in Section IV-E. feature co-occurrence. The best feature combination cdounel
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1. Prepare a set a¥ labeled samples as 1. Initialize a feature subsefy = 0.
(w3,95), - (TN, yN)- y; € {+1, -1} is the 2.Fori=1,..,F:
class label associated with the sample image Forj =1,..., NumOf FeatureCandidates:
Zj. ) (A) Generate a weak classifier by
2. Initialize weightsD1 (i) = —. combining S;_; with one featuref;.
3.Fort=1,..,T: N (B) Evaluate accuracy of the weak
(A) For each feature, calculate a feature value. classifier by a criterion function
(B) Binarize each feature value and assign|a G(Si-1 U fj)- G is evaluated by
binary variable according to Eq.(1). e for DAB or Z; for RAB.
(C) Train a weak classifier based on a End For
combination of features. Select the best featurg™
(D) Chooseh, (z) with the lowest J" = argmin G(Si—1 U fj).
Bhattacharyya bound: Add it to the subset:
Zi =23 /Ply=+1[)P(y = —1]5). Si=Si_1Uf".
i . End For
P(y = +1[j) and P(y = —1[j) are 3. Output the weak classifier with the subsgt.
calculated by Eq.(4) and (5), respectively.
(E) Update the Wle)'ghtS: o (s Fig. 9. Pseudo-code for training weak classifiers based & BFReatures
Dyy1(i) = 1(1) oxp (=yihe(2:)) ) are selected through this procedure.
> De(i) exp (—yiha (24))
End For
4. Output the final strong classifier: I . .
P T g unreliability due to large histograms we limit by,
H(z) = sign <Z ht(x)> .
t=1 2™ %10 < N, (9)
Fig. 8. Learning procedure based on RAB. so that at least 10 samples fall into each bin when eadh

uniformly observed.
The following two methods for determining are considered:

by exhaustive search from all possible feature combinatio{1) Select the best strong classifier from several classifiamed
However, because the computational cost increases exjalhen using different values for". Since a fixedF is used for each
with the number of feature candidates, this is usually irogical. ~ classifier, all weak classifiers observe the same number af fe
The computational complexity for selecting from M feature tures. The computational complexity for constructing esitbng
candidates i®©(M"). Branch-and-bound algorithms [28] can fincelassifier is equivalent to that of Viola and Jones’ framewor
the optimal solution more efficiently. However, when the mem Therefore, the total cost for choosing the best classifieneses
of feature candidates is very large, the worst case conplexiinearly according to the number df settings.
is exponential. Furthermore, they require the featurectiele (2) Choose the bedt; for each weak classifigr;. The leave-one-
criterion function to be monotonic, which cannot be satikiieall out method or the bootstrap method can be used for the chbice o
cases. Several solutions for efficient feature selectiom heeen F;. However, in both cases training is expensive because texpea
proposed, but without a guarantee for optimal selectiof. [BAe training and testing is required for estimatigy. Here, we use
best-known methods are Sequential Forward Selection (8k®) the hold-out method, in which a set of samples is extractewh fr
Sequential Backward Selection (SBS). SFS is a greedy agiproghe training samples for validation. Each weak classifiestto
starting with the best feature and adding other featuredprome find the best number of combined features by incrementipng
that satisfy a predetermined criterion. In contrast, SB&Stwith from 1 to 77, so that the los€., calculated on the validation
all features as an initial subset and decreases it one byTtwee. samples is minimized:
Plusi-Minus+ method [29] combines SFS and SBS, first adding
| features to the subset using SFS and then deletimging SBS. Fy = argmin L. (10)
Sequential Forward Floating Selection (SFFS) and Sedlenti
Backward Floating Selection (SBFS) [30] are generaliratiof The total cost for training the final strong classifier beceme
the Plusi-Minus+ method, which automatically determine ther™“* times larger than Viola and Jones’ framework.
values of/ and . Pudil at al. [30] compared these sequential |n order to reduce the time for training; can be determined
methods and reported SFFS was performing best among themwlfen L, starts to increase before reachifig*®*. In this case,
this paper, we use SFS because of its simple implement&®8. F, + 1 features need to be evaluated. The total cost for training
adds features one by one to improve the classification acgurahecomes twice as high compared to Viola and Jones’ framework
The accuracy is evaluated by for DAB or Z; for RAB. The in the worst case, where every weak classifier evaluates icomb
computational complexity becomeS(FM). Pseudo-code for nations of two features but chooses only one feature in the en
training weak classifiers based on SFS is shown in Figure 9. 1, is defined as an exponential loss on the validation samples
How we determine the number of selected features also because the margin from the classification boundary can be
important. Choosing too large leads to overfitting. Furthermore considered by using the exponential loss instead of usirgrran
the range ofj doubles with each added feature. To avoid statisticedte. A set of N’ labeled validation samples?,y.) is used for
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calculatingLy: by
1 2l
Ly = 55 D exp (~yiHri (7)) | (11)
i=1 )
where Hp. () is a strong classifier at=7". It is represented as |
follows: .

T/
Hy: (z) = sign Z athe(z) |, (12)
t=1
wherehr is a weak classifier which is trained. Fig. 10. Typical training samples. Top: positive samplestidm: negative

The first feature selected by the proposed framework Com@inisamples. The negativg data inpludes difficult sarr_lples wdniersimilar to the
SFS and DAB is the same as the one selected by Viola and JorR98/iVé samples obtained during the bootstrapping peces
framework. Other features may be different except for thestvo
case mentioned above, where all weak classifiers chooseonaly
feature.

The hold-out method for choosing the number of features
applicable to training a cascade of classifiers using a thligh
modified version of the algorithm in [7]. The training algbm in
[7] iterates adding one feature and evaluating the curdessiier
on the validation set in order to adjust the threshold. When
the classifier satisfies the predetermined performance, gol IV. EXPERIMENTAL RESULTS
a minimum detection rate and a maximum false positive rate,
negative samples, which are classified to be positive byulrent A. Data Collection

cascade, are collected for training the next classifietefds of Figure 10 shows typical samples used in the experiments.

adding one feature only by boosting, we use SFS or boOstige train four classifiers for detecting faces and hands ieethr
Features are added by SFS as long as the loss defined abovgif8ent poses, respectively.

the validation set continues to decrease. Otherwise, riesatare First, we explain how positive samples of the target objects

added by boosting. The validation set, which is regarded aSaBre collected. Face samples were collected by extracOr@p0
hold-out set, can be commonly used for threshold adjustizuett images randomly from well-known public databases, which ar

rectangle features. In contrast, our framework does noease
tige computational cost, whereas the accuracy is improved. F
thermore, their PCA-based weak classifiers use raw pixed dat
and are thus affected by changes in illumination which are no
included in the training samples.

choosing the number of features. AT&T [19], FERET [20], CMU-PIE [21], XM2VTS [23] and
. . Yale [22]. Only frontal upright faces are selected from the
E. Discussion databases. The face samples do not include pose variation bu
This section distinguishes our framework from previous a variety of illumination conditions. The locations of plspand
proaches that utilize co-occurrence of multiple features. nostrils are marked manually, and based on these pointsatiee f

The Local Binary Pattern (LBP) representation proposed Isggions are aligned and scaled to a base resolutio®s of 25
Hadid et al. [15] can express primitive features such as sdgaxels. For hand data collection, we took video sequences in
or corner points by comparing intensities between a targahich people make three different hand gestures, whichalhedc
pixel and peripheral pixels. This approach uses co-ocooee Fist (hand upright with curled fingers facing the camera)e®p
of neighboring pixel pairs. However, only a limited numbdr o(open hand facing the camera) and Point (pointing toward the
feature combinations are evaluated. Our framework is ablesé camera with the index finger) in this paper. The video seqegnc
additional co-occurrences, which cannot be representetthdse were taken in different illumination conditions. Top andttom
features by searching feature combinations at each stagfeeof corners of hands are marked manually, and 5,000 hand samples
boosting process. are resized t@®5 x 25 pixels. Each pose includes both left and

Schneiderman and Kanade [6] learned the appearance of tight hands.
jects by evaluating dependencies between wavelet coefficie Next, we describe how negative samples were collected. We
Their face detector has one of the best reported detection peollected more than 8,000 images from the Web that do not
formances [16]. However, it does not run in real-time since @ntain any of the objects of interest. Each image was &t
large set of feature combinations given in advance is used fato patches of siz@5 x 25 pixels and selected randomly so that
evaluating joint statistics. Our framework automaticallects a the number of initial negative samples became 40% of theipesi
small number of discriminative feature combinations. samples. There are 4,000 negative samples for the facéfielass

Template matching or PCA [17] based weak classifiers camd 2,000 for the hand classifiers. Using this data, we tdaine
also be incorporated into Viola and Jones’ framework irdtelr  Viola and Jones’ classifiers. We added 2,000 non-face imaige:s
using rectangle features, thus including spatial strectdhang 1,000 non-hand images misclassified by these classifierseto t
et al. [18] select rectangle features at early stages of dbosting initial negative samples. We trained Viola and Jones’ dfigss
process and select the best eigenvector in later stagegptoven again using the updated data and collected misclassifiedleam
accuracy. However, it is necessary to determine the swigchiuntil the number of negative and positive samples were equal
stage based on the trade-off between speed and accura@venprThese bootstrapping [1] iterations were repeated threestim
ment because the computational cost of the PCA-based wéeatal. As a result many difficult negative samples similarthie
classifiers is larger than that of weak classifiers based en thositive samples were collected as shown in Figure 10.
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TABLE | v ! -
ace Fist Open Point
FOUR CLASSIFIERS COMPARED IN THE FIRST EXPERIMENT' IS THE T
b HE EHE
NUMBER OF FEATURES USED IN EACH WEAK CLASSIFIERT IS THE .

NUMBER OF WEAK CLASSIFIERS THEREFORE THE TOTAL NUMBER OF FL holo) ﬂ -] .. .!
FEATURES FOR EACH STRONG CLASSIFIER IS CALCULATED BY x T ks .! EE .- .-

THE NUMBER OF WEAK CLASSIFIERS AND THE TOTAL NUMBER OF Error 0.16 023 0.26 0.22
FEATURES ARE THE SAME ONLY INF'1, VIOLA AND JONES CLASSIFIER F3 hy(x) MMHM .nnﬁ .--' .=!.
THE BOOSTING ITERATIONS ARE STOPPED WHEN THE TOTAL NUMBER OF | Error 0.14 0.18 0.23 0.19

SELECTED FEATURES REACHE4,000.

Classifiers | F T Total number of features
F1 1 | 1,000 1,000 Fig. 11. Training results and error rates. The first thre¢ufea selected for
F3 3 333 999 F'1 (Viola and Jones’) and”3 (ours) are shown. The first feature is the same
FS 5 200 1,000 but the subsequent features are differen8. has a lower error rate thaR'1.
F7 7 142 994
TABLE Il
B. Performance Evaluation by Cross Validation COMPUTING TIMES OF THE FOUR CLASSIFIERSAVERAGE TIME FOR

CLASSIFYING ONE SAMPLE WERE MEASURED ON ANNTEL XEON 3.2

We adopt 10-fold cross validation for performance evabrati
GHZ PROCESSOR

The samples are partitioned into ten sets. Nine sets arefased

training and the trained classifier is tested on the remgisit. Classifiers | Total number of featured Seconds per sample
The average error rate is calculated by repeating trainimdy a F1 1,000 0.000259
testing ten times on different combinations of sample deor F3 999 0.000226
rates are calculated by counting the number of misclassdita E? 19'330 8:838338

C. Experiment (1): Performance Comparison between Classifi
Based on DAB

For each object four classifiers with different training pae- based on the proposed framework show smaller error rates tha
ters shown in Table | are trained using DAB and the basic featl{hose of 1. Comparing the lowest error rates bl and F3, the

set shown in Figure 1 (a)f'1 indicates a classifier trained by .
; L . . .~ error is reduced by about 30 to 50%. The error rateg'®dfand
Viola and Jones’ framework and it is restricted to using agin F'7 is higher than that of"3. This means that's and F'7 overfit

feature for each weak classifier. The classifiefs F5 and F'7 Y : . .
. . ) the training data because it combines many features in eaak w
are trained by the proposed framework combining three, fixk a o . . .
classifier. Choosing the appropriate number of featétas thus

seven features, respectively, in each weak classifier. Alakv . . .

classifiers use a predetermined number of features. Anatiatu important for improving the performance.

of choosing the number of features automatically is cardet Table 1l shows the computing times of the four classifiers

in Experiment (2) described in the next section. to F'7. Average classification times of one sample were measured
Figure 11 shows features selected fBrn and F3. Three on an Intel Xeon 3.2 GHz processor. The results are comparabl

features selected at the beginning of the boosting process &he methods using multiple features are slightly fasten tha.

shown in (b), (c) and (d). Average images of object classes Hhis is because the number of weak classifiers is smaller than

sample distributionD; are shown in (a). Thé-th pixel value in that of F'1 and thus the number ef; terms is smaller.

the average imager; is calculated by To confirm the differences between the three frameworks

my g, = ZDt(i)xk(i)v (13) explained in Figure 2, we carried out an additional expenime
Z shown in Table Ill. The error rates of three classifiers, Whic
consist of 15 features but combine them in different ways,
are compared.F'1 was trained according to Viola and Jones’
framework, i.e., each weak classifier uses a single featurs.
consists of only one weak classifier which combines 15 featur
by SFS.F3 was trained by our framework, which assigned three

different from each other. For example, facial parts areoirtgmt features for each of f.|ve We"?‘k c|a35|f|9515 yields the worst
error rates because it overfits the training data and dezseas

for detecting faces but silhouette information is more intgat . S g
for open hands. Error rates are also shown in the figure. Troe erSt"J‘t'St'CaII reliability due to combining too many featurdss

rates of /3 are smaller than those @1. This means that the co- outperforms other classifiers.
occurrence of three features yields higher accuracy thanhitee In the subsequent experiments we compAideonly with F'3
features selected sequentially through the boosting psoce becauser'3 has the lowest error rate among our three classifiers.
Figure 13 illustrates four error curves for each of the foufurthermore, we show that the proposed framework achieves
objects. Error rates calculated by 10-fold cross validatase higher performance when RAB is used for training instead of
plotted against the number of features used for classificalihe DAB and when the extended feature set is incorporated idstea
number of features is equivalent to the computational cost fof the basic feature set. The final experiment evaluatesstnbas
classification when the basic feature set is used. All diassi against occlusions.

wherez (i) is the k-th pixel value in thei-th sample image. The
first feature is the same far1 and F'3, but the second and the
third feature are different. This result is to be expecterbeding
to the algorithm shown above. The target objects have differ
structure and important features selected for classificatire
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TABLE Il Face Fist Open Point
ERROR RATE COMPARISON BETWEEN THREE CLASSIFIEREACH : :
CLASSIFIER CONSISTS OA5 FEATURES BUT WAS TRAINED IN DIFFERENT
WAYS. WEAK CLASSIFIERS OFF'1 DEPEND ON A SINGLE FEATUREIT
USES A SINGLE FEATURE FOR EACH OA5 WEAK CLASSIFIERS IN
CONTRAST, F'15 USES15 FEATURES FOR ONLY ONE WEAK CLASSIFIER
F'3 WAS TRAINED BY OUR FRAMEWORK, WHICH ASSIGNED THREE
FEATURES FOR EACH OF FIVE WEAK CLASSIFIERSF'15 YIELDS THE
WORST ERROR RATES BECAUSE OF OVERFITTINGERROR RATES OFF'3
ARE THE SMALLEST.

Classifiers| F T Face| Fist | Open | Point Fig. 12. Test samples partially occluded by random patteFop: positive
F1 1 15 010 | 018 022 | 0.17 samples, bottom: negative samples.
F15 15| 1 012 | 019 | 0.24 | 0.21
F3 3 5 0.07 | 0.12] 0.18 | 0.12

an effective way to construct a good classifier. Our framé&wor
further improves the performance.

D. Experiment (2): Choosing the Number of Combined Features

In this experiment performances of three classifigrs, F3 G- Experiment (5): Performance Comparison between Classifi
and H are comparedF1 and 3 use a fixed number of featuresBased on RAB with the Extended Feature Set
in each weak classifier. The classifigi automatically chooses Figure 17 illustrates error rates of classifiers based on RAB
the number of features using the hold-out method explained using the extended feature set. Our classifiershows smaller
Section IlI-D. The number of features is increased until therror rates than those df1.
validation loss starts to increase or until reachin** = 7.

Unlike other experiments, we cannot use 10-fold cross atibd | Experiment (6): Evaluating Robustness against Occhssio
here because the number of features would be different fdr ea . . . . .
In this experiment robustness against occlusions is etedua

weak classifier of the ten classifiers. We trained classifisisg : .

The proposed method can be seen as using stronger spatial

four data sets out of ten and another two sets as the hold-gu ) S e 3
constraints for building weak classifiers compared to Viatel

data for choosing the number of features. The classifiere W oo method. This brings up the question of whether we lose

tested on the remaining four sets. For example, face classifi - . .
were trained using 4,000 training samples and 2,000 hdd_Ogbustness towards occlusion. Again, the two classifiersand

samples and they were tested on the remaining 4,000 samp, 3 are compared. The classifiers are the same as those used in

S. . : . i
For three hand classifiers, 2,000, 1,000 and 2,000 Werermisigf Xperiment (5), which are trained with RAB on the extended
respectively. All classifiers are based on DAB.

eature set. The test samples are different from Experir(@&nt
Figure 14 shows that the error ratesmfand F'3 are compara-

As shown in Figure 12, they are partially occluded by random
ble and smaller than those &fl. We can conclude that choosing

patterns. The size of the occluded areas is 25 pixels. About
the number of features by the hold-out method is an effestixg one third of the area of each sample is occluded. The inteosit
of improving the performance overi.

each pixel in the occluding patterns is set by sampling aoomif

distribution between 0 and 255. Figure 18 shows the erresraf

F1 and F3. In this experiment the proposed method is not less

E. Experiment (3): Performance Comparison between Classifi ropust towards occlusions. The performance against doasis

Based on RAB depends on the occluding patterns, the position and theosize
Figure 15 shows error rates of classifiers trained using RABe occluded areas and the target objects.

instead of DAB. Our classifieF'3 consistently achieves smaller

error rates tharf'1. This means that the proposed framework is

still effective when a different version of the boosting @ithm

is incorporated. Comparing Figure 13 with Figure 15, clams

based on RAB perform better than those based on DAB.

F. Experiment (4): Performance Comparison between Classifi
Based on DAB with the Extended Feature Set

Figure 16 illustrates error rates of classifiers based on DAB
using the extended feature set shown in Figure 1 (a) to (tBads
of the basic feature set, only (a). Note that the computation
cost is not always equivalent to the number of features ia thi
case, whereas they are the same when using the basic feature
set. Our classifietF’3 shows smaller error rates than those of
F'1. This means that the proposed framework is effective when
the feature set is extended manually. Comparing Figure i3 wi
Figure 16, classification performance is greatly improvedi&ing
the extended feature set. Manual extension of the featurées se
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Fig. 13. Experiment (1): performance comparison of classifbased on DAB. Top-left: performances of the Face detecip-right: Fist, bottom-left: Open,
bottom-right: Point.
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Fig. 14. Experiment (2): performance comparison of clamsifirained by the hold-out method. The number of featuresl irs each weak classifier is
automatically determined.
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Fig. 15. Experiment (3): performance comparison of classifbased on RAB.
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Fig. 16. Experiment (4): performance comparison of classifbased on DAB with the extended feature set.
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Fig. 17. Experiment (5): performance comparison of classifbased on RAB with the extended feature set.
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Experiment (6): performance comparison in the gmes of partial occlusion by random patterns. Classifiesedbaon RAB with the extended
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V. CONCLUSION

[16]

We have proposed a new framework for object detection.
Experimental results show that the proposed frameworkdyiel[17]

higher performance than Viola and Jones’ framework. Thenmai18
advantages of the new framework are summarized as follows:!

« It improves the classification power by incorporating cof9]
occurrence of multiple features at the same computational

cost. Alternatively, comparable accuracy is achieved
smaller computational cost.

o)

Co-occurrence of multiple features is expected to be useful

for various kinds of objects because every object categ

exhibits some spatial structure.

12

M. H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting fade images:
A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol.24.1, pp.34—
58 2002.

M. A. Turk and A. P. Pentland, “Eigenfaces for recogmitl’ J. Cognitive
Neuroscience, vol.3, no.8, pp.71-86, 1991.

] D. Zhang, S. Z. Li, and D. G. Perez, “Real-time face diébdecusing

boosting in hierarchical feature spaces,” Proc. ICPR, Jib-414, 2004
F. Samaria and A. Harter, “Parameterisation of a ststthianodel for

human face identification,” 2nd IEEE Workshop on Applicatoof

Computer Vision, 1994.

P. J. Phillips, H. Wechsler, J. Huang and P. Rauss, “TBRET database
and evaluation procedure for face recognition algorithrtreage and

Vision Computing J, vol.16, no.5, pp.295-306, 1998.

] T. Sim, S. Baker and M. Bsat, “The CMU Pose, llluminaticend

Different versions of boosting algorithms such as Re#?2]
AdaBoost can be integrated with the proposed framework.
Extensions of feature spaces can also be combined, possibly

further improving the classification performance.

[23]

In this paper, we used only intensity gradient information
extracted by rectangle features. In the future, we propase t
investigate the integration of Gabor features or rectafegéures
in different feature spaces such as color or motion. Theqmep [24]
framework could also be extended to multi-class objectaiiete.
Torralba et al. [31] proposed the idea of sharing featuresrgm [25)
multiple classes. Huang et al. [32] proposed the Vector Bogs
algorithm which efficiently detects multiple object class&Ve
think that the proposed framework is applicable to thesehouxt
if there exist discriminative feature co-occurrences \utgan be
shared among multiple classes.
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