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Abstract

This paper proposes a new approach to multi-object
tracking by semantic topic discovery. We dynamically
cluster frame-by-frame detections and treat objects as
topics, allowing the application of the Dirichlet Process
Mixture Model (DPMM). The tracking problem is cast
as a topic-discovery task where the video sequence is
treated analogously to a document. This formulation ad-
dresses tracking issues such as object exclusivity con-
straints as well as cannot-link constraints which are in-
tegrated without the need for heuristic thresholds. The
video is temporally segmented into epochs to model the
dynamics of word (superpixel) co-occurrences and to
model the temporal damping effect. In experiments on
public data sets we demonstrate the effectiveness of the
proposed algorithm.

1 Introduction
Multi-object tracking is a mid-level computer vision task,
which is employed in applications such as action recog-
nition or automatic video summarization. The task is to
link a number of given detection hypotheses into trajecto-
ries corresponding to different objects in a video. There has
been significant progress in multi-object tracking (Zhang,
Li, and Nevatia 2008; Pellegrini et al. 2009; Xing, Ai,
and Lao 2009; Pirsiavash, Ramanan, and Fowlkes 2011;
Milan, Schindler, and Roth 2013; Luo et al. 2014; Leal-
Taixé et al. 2014), however, issues like tracking manage-
ment, appearance variations and occlusions remain chal-
lenging. Traditionally, the multi-object tracking task is cast
as a data association problem in which detection hypothe-
ses are grouped into trajectories. Standard methods, such as
the Hungarian algorithm, can be readily applied, however
several practical considerations remain: Temporal gaps be-
tween observations may lead to disconnected trajectories of
the same object (Zhang, Li, and Nevatia 2008; Pirsiavash,
Ramanan, and Fowlkes 2011). Determining the maximum
allowable gap is difficult: low values will cause more frag-
mentation while higher values lead to more incorrect associ-
ations (ID switches). Handling track initialization and termi-
nation (also known as tracking management) is often based
on heuristics. An existing trajectory may be terminated in
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the case of a single missing detection, resulting in fragmen-
tation in some sequential approaches (Luo and Kim 2013;
Luo et al. 2014). Appearance variation of objects may lead
to fragmentation or ID switches as a result of inappropriate
similarity measures. Physical constraints are rarely modeled
explicitly, the work in (Milan, Schindler, and Roth 2013)
being one exception. Uniqueness constraints model the fact
that (a) at most one object per frame can be associated with
each trajectory, and (b) no more than one trajectory can be
assigned to the same detected object.

In this paper we propose an alternative approach to tem-
poral data association by clustering detection instances,
where each cluster corresponds to a unique object. We in-
troduce a text-document analogy, where an object corre-
sponds to a semantic topic within a video sequence. A se-
mantic topic can be defined as co-occurring words – we use
a bag-of-superpixel representation for objects, encoding ap-
pearance and spatial information. An object is thus tracked
as a new topic that evolves over time and fades away.

We employ a Dirichlet Process Mixture Model (DPMM)
to dynamically cluster detection responses into sets of ob-
jects (Ahmed and Xing 2008). The merit of applying a
DPMM is that the number of semantic topics is learned auto-
matically. Furthermore, it is naturally feasible to model dy-
namics in the clustering procedure for semantic topic dis-
covery based on the DPMM.

In a standard DPMM, when we consider the assignment
of a given instance, the prior of which cluster the instance
should belong to only depends on the number of existing in-
stances in the cluster. However, in our problem, we also take
the temporal distances between clusters and the given in-
stance into consideration. Therefore, instead of treating the
whole video as a single document, we divide it into sequen-
tial epochs in order to model the dynamics of prior knowl-
edge and appearance variation of objects during clustering.
In terms of constraints, by adopting clustering, the exclu-
sivity constraint of one trajectory per object is handled natu-
rally by the assignment of each detection to only one cluster.
To deal with the other constraint, we introduce the so called
cannot-link constraint, which prohibits two detections in the
same frame being assigned to one trajectory.

To summarize, the contributions of automatic topic dis-
covery for multi-object tracking are (1) multi-object tracking
is cast as dynamic and sequential clustering by the applica-
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tion of DPMM without heuristics like maximum allowable
temporal gap. Tracking management is handled automati-
cally in the clustering procedure, (2) appearance variation of
objects is modeled by the dynamics of cluster parameters,
(3) exclusivity constraints are handled naturally due to the
cluster assignments and the introduction of the cannot-link
constraints to the model, (4) in a more general sense, we pro-
vide a dynamic clustering algorithm as a tracking solution
which could serve as a basic framework to integrate other
appearance, or motion models for multi-object tracking.

2 Related Work
The most relevant work on topic models and multiple object
tracking is reviewed in the following.

2.1 Topic Model
Popular topic models for text document processing include
Latent Semantic Indexing (LSI) (Dumais et al. 1995), prob-
abilistic Latent Semantic Analysis (pLSA) (Hofmann 1999),
Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan
2003), and Dirichlet Processes (DP) (Teh 2010). These topic
models typically employ the concepts of words, topics and
documents. Specifically, by treating a document as a bag
of exchangeable words, documents are modeled as distribu-
tions over topics and topics are modeled as distributions over
words. Due to the merits of these methods for discovering
thematic structure, they have been adopted in computer vi-
sion tasks in recent years. For example, a latent topic model
is developed for object segmentation and classification (Cao
and Fei-Fei 2007). Spatial information is integrated into a
LDA model (Wang and Grimson 2008) for image segmen-
tation by Wang and Grimson. Topic models have been ap-
plied to numerous other tasks, such as region classification
(Verbeek and Triggs 2007), trajectory analysis (Wang et al.
2011), image annotation (Wang, Blei, and Li 2009), and im-
age scene categorization (Fei-Fei and Perona 2005).

2.2 Multi-object Tracking
Approaches for multi-object tracking may be classified into
two sets, sequential (or online) and batch (or offline) meth-
ods. Sequential methods typically attain the observations
up to the current frame. Based on these observations, ap-
pearance models (Shu et al. 2012), motion models (Kratz
and Nishino 2010), and interaction models (Pellegrini et al.
2009; Yamaguchi et al. 2011) are designed to discover ap-
propriate candidates to extend existing trajectories. Batch
methods attain the observations through the whole sequence,
and usually treat tracking as a data association problem.
Associations are obtained by minimizing a cost function,
which is constructed from pairwise observation similari-
ties. Popular approaches include the Hungarian algorithm
(Xing, Ai, and Lao 2009), K-shortest paths (Berclaz et al.
2011), min-cost network flow (Zhang, Li, and Nevatia 2008;
Butt and Collins 2013), Conditional Random Fields (Yang
and Nevatia 2012; Milan, Schindler, and Roth 2013), and
Maximum Weight Independent Sets (Brendel, Amer, and
Todorovic 2011). Please refer to (Luo, Zhao, and Kim 2014)
for a more extensive review.

Figure 1: Graphical model of the DPMM (a) and our topic
model (b). In our model the document is temporally divided
into epochs to model the temporal dynamics. CNL and ML
denote the introduced cannot-link and must-link constraints.

3 Dirichlet Process Mixture Model
The Dirichlet Process Mixture Model (DPMM) (Blei and
Jordan 2006) is a non-parametric model which assumes the
data is governed by an infinite number of mixtures where
only a fraction of these mixtures are activated by the data.
Fig. 1(a) shows the graphical model of a DPMM. Assuming
that the k-th mixture is parameterized by θk, each sample xi
is generated as follows:

G|α,G0 ∼ DP (α,G0) ,

θk|G ∼ G,
xi|θzi ∼ F (θzi) ,

(1)

where DP (•) is a Dirichlet process, G0 is a base distribu-
tion, α is a concentration parameter, θk is drawn from G,
which itself is a distribution drawn from the Dirichlet pro-
cess, and F (θzi) denotes the distribution of observation xi
given θzi , where zi is the mixture indicator of xi. When this
model is applied to clustering, zi is the cluster index. Note
that the number of mixtures in the model is determined by
the data, i.e. the number of clusters is learned automatically,
in contrast to parametric models such as K-means.

The Chinese Restaurant Process (CRP) illustrates the
DPMM intuitively: Assuming an infinite number of tables
(clusters), a new customer (observation) chooses an empty
table with probability depending on α or joins an occupied
table with a probability proportional to the number of people
seated at that table. Formally,

θi|θ−i, G0, α ∼
∑
k

nk
i− 1 + α

δ (φk − θi)+
α

i− 1 + α
G0 ,

(2)
where φk is the parameter of cluster k, θ−i is the set of as-
sociated parameters of x−i, i.e. observations except xi, nk is
the number of customers already at table k and δ (·) is the
Dirac delta function centered at 0. φ1:k is the discrete set of
values of {θi}. It can also be written as θi = φk with prob-
ability nk

i−1+α , and θi = φnew, φnew ∼ G0 with probability
α

i−1+α .

4 Automatic Topic Discovery
In this section we develop a topic model to address the multi-
object tracking problem. We treat superpixels as words,
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videos as documents and trajectories/objects as topics dis-
covered in the video. We cluster coherent detection hypothe-
ses (word co-occurrences) into trajectories (topics). As the
number of objects/trajectories is not known in advance it is
learned from the data using a DPMM.

Classical text-analysis applications of the DPMM assume
that the document consists of a bag of exchangeable words,
i.e. without specific order and without any dynamic model-
ing. In our problem, words are not assumed to be exchange-
able as we consider a set of superpixels (words) in a de-
tection hypothesis jointly as an observation. We also take
temporal information into account, i.e. the prior probability
of which cluster an observation belongs to depends on their
temporal distance. To model dynamics (Ahmed and Xing
2008), we divide the video into temporal epochs, modelling
each epoch by a DPMM with associated hyper-parameters.
As object appearance varies (temporal dynamics of word-
occurrence), the distributions of superpixels (words) in an
object (topic) is dynamic across the video (sequential doc-
uments). Further, as objects appear and disappear, corre-
sponding to the birth and death of topics, the distributions
of topics also vary across different epochs. We also observe
that between two adjacent epochs, the distribution of words
in a topic and the distributions of topics in a document are
closely related to each other due to temporal continuity.
Thus the relation between continuous DPMMs is modeled
as a first-order Markov process. Fig. 1(b) shows the graphi-
cal model of the proposed approach.

4.1 Visual Representation
We adopt superpixels, pixel groups of similar color and
location (Achanta et al. 2012), for representing visual ap-
pearance. In our implementation, a detection bounding box
is segmented into approximately 200 SLIC superpixels
(Achanta et al. 2012), each described as a 5-dimensional
vector (r, g, b, x, y), where (r, g, b) and (x, y) are the mean
color and position, respectively. We cluster all superpixels
from all frames in the video by K-means and define a dic-
tionary from the cluster prototypes. Each bounding box is
quantized using this dictionary and represented as a his-
togram. Similar to part-based models (Felzenszwalb et al.
2010) this object representation exhibits some robustness to
partial occlusion since some superpixels representing the ob-
ject will remain visible.

Usually the detection responses are linked into low-level
reliable tracklets (Kuo, Huang, and Nevatia 2010) in a pre-
processing step. Here we employ KLT tracking to obtain N
low-level tracklets, x1:N . Each tracklet is represented as a
tuple xi =

〈
Ahi , A

t
i, Ãi, Ṽi, T

h
i , T

t
i

〉
, where Ahi and Ati are

the appearance representations (histograms) of the head and
tail element within tracklet xi, Ãi and Ṽi are the average and
the covariance of the appearance histograms of the complete
tracklet xi, Thi and T ti are the time indexes of the head and
tail element in xi.

4.2 Temporal Constraints
The first temporal exclusion constraint, that at most one ob-
ject can be assigned to each trajectory, is modeled by the

exclusive property of cluster membership of each object de-
tection. The second one, i.e. one trajectory cannot be as-
signed more than one detection within the same frame, is
modeled by a cannot-link constraint. If two tracklets in the
same epoch overlap temporally, they cannot have the same
cluster label, i.e. they cannot be linked to be part of an iden-
tical object. We represent the set of cannot-link constraints
in epoch t as

CNLt = {(xt,i, xt,j) |zt,i 6= zt,j} , (3)

where zt,i and zt,j are cluster membership indicators of
tracklets xt,i and xt,j which overlap in epoch t. The parti-
tioning of the video into epochs may split tracklets into seg-
ments. We use must-link constraints between tracklets from
adjacent epochs to connect these. The constraint for epoch t
is given by

MLt = {(xt,i, xt−1,j) |zt,i = zt−1,j} . (4)

Note that there are no must-link constraints for the first
epoch.

4.3 Temporal Damping
Temporal effects need to be included during the process of
clustering the observations. Let us illustrate this by the Chi-
nese Restaurant Process (CRP) representation. In the CRP,
prior knowledge only depends on the existing number of
customers belonging to the table. However, in our multi-
object tracking problem, this is not sufficient. When we cal-
culate the cluster which the tracklet belongs to, we addition-
ally need to take the temporal gap between this new tracklet
and existing clusters into account. For example, considering
a cluster which is temporally distant from the given track-
let, the probability that the tracklet is assigned to this cluster
is low, even if there are already many tracklets assigned to
this cluster. In other words, the assignment prior probability
should decay with the temporal gap between a cluster and
the tracklet. Considering a tracklet at epoch t, suppose some
clusters already exist, the number of members belonging to
cluster k at epoch τ is damped by a weight, similar to (Zhu,
Ghahramani, and Lafferty 2005), as:

nk,τ =
∑
j

δ (zτ,j − k) exp (−η (t− τ)) , τ < t , (5)

where z is the cluster membership indicator, η is a damping
factor.

4.4 Likelihood
Based on the object representation, the cluster parameter is
a Gaussian distribution with center Ã and covariance ma-
trix Ṽ , which are computed from the appearance histograms
within the cluster. The likelihood of an observation given a
cluster is estimated as

f (xt,i|φt,k, xt,k,·)
∝ s

(
xheadt,i , xtailt,m

)
s
(
xtailt,i , x

head
t,n

)
p(Ãt,i, Ṽt,i;φt,k) ,

(6)

where xt,k,· is the set of observations associated with φt,k,
xtailt,m and xheadt,n are the tail detection and head detection
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Figure 2: Schematic of the proposed method. The left side shows object representation and an exemplar tracklet. The right side
shows the dynamic clustering procedure. Potential assignments are shown by dashed arrows. Temporally overlapping tracklets
cannot be clustered together due to the cannot-link constraint (solid red arrows). Note the second tracklet and the third tracklet
in the first row. They are from a single tracklet which crosses the first and the second epoch before we generate tracklets, so
they are connected by the must-link constraint (solid black arrow). In the last epoch, there is only one tracklet. Considering the
temporal damping effect, the prior that this tracklet is linked to tracklets in previous epochs is limited if there is no intermediate
tracklet bridging them (figure best viewed in color).

which are closest to xheadt,i and xtailt,i respectively regard-
ing temporal difference, s (·, ·) is the similarity between
two histograms based on the superpixel representation,
p(Ãt,i, Ṽt,i;φt,k) is the likelihood of Ãt,i and Ṽt,i given φt,k.
Note that the first two terms compute the local affinity and
the last term computes the global affinity in terms of tempo-
ral span.

5 Inference
Assuming there are N tracklets as x1:N and T number of
epochs, let us denote the observations in epoch t as x1:Nt

, the
corresponding estimations as θ1:Nt

. We consider the first-
order relation in our model, i.e. the first epoch is a normal
DPMM and subsequent DPMMs are closely related to the
previous DPMM. The posterior probability is written as

P (θ1:N |x1:N , α,G0,CNL,ML)
= P (θ1:N1

|x1:N1
, α,G0,CNL1)×

T∏
t=2

P
(
θ1:Nt

|x1:Nt
, θ1:Nt−1

, α,G0,CNLt,MLt
)

∝ P (θ1:N1
|x1:N1

, α,G0,CNL1)×
T∏
t=2

f (x1:Nt |θ1:Nt)P
(
θ1:Nt |θ1:Nt−1 , α,G0,CNLt,MLt

)
,

(7)

where f (·) is the likelihood function,
P
(
θ1:Nt

|θ1:Nt−1
, α,G0,CNLt,MLt

)
encodes the evolu-

tion over time.
Computing the posterior is intractable, and we use Gibbs

sampling for inference (Ahmed and Xing 2008), introducing
the latent cluster indicator variable of xt,i as zt,i. For each
epoch, the inputs are the tracklets in this epoch and existing

clusters up to this epoch; the outputs are the clusters after be-
ing assigned tracklets in the current epoch. The state of the
sampler contains both the cluster indicators zt,· of all obser-
vations and the states φt,· of all clusters. We iterate between
two steps: (1) given the current states of clusters, sample
cluster indicators for all the observations, (2) given all clus-
ter indicators of observations, update the states of clusters.

(1) Enforcing must-link and cannot-link constraints, clus-
ter indicators are sampled as follows:

(a) if xt,i is a member of the must-link set, i.e. MLt, the
cluster indicator of xt,i should be identical to that of its
must-link counterpart xt−1,j ;

(b) else the cluster indicator of xt,i is sam-
pled according to the conditional posterior as
P (zt,i|z1:t−1, zt,−i, xt,i, xt,k,·, φt,1:k, α,G0). This
is analogous to standard DPMM sampling with the
difference of temporal damping, thus this probability
can be written as:

P (zt,i = k| · · · )

∝ nk,1:t−1 + nk,t,−i
N1:t−1 +Nt + α− 1

f (xt,i|φk,t, xt,k,·) ,
(8)

where nk,1:t−1 =
∑t−1
τ=1 nk,τ is the number of past ob-

servations with cluster indicator k considering tempo-
ral damping, nk,t,−i =

∑
j∈−i δ (zt,j − k), N1:t−1 =∑

k∈K nk,1:t−1, K is the set of indicators of existing
clusters.
We also allow the emergence of a new cluster with prob-
ability

P (zt,i = new cluster| · · · )

∝ α

N1:t−1 +Nt + α− 1

∫
θ

f (xt,i|θ) dG0(θ) .
(9)
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Table 1: Multi-object tracking results. The proposed automatic topic discovery (ATD) is applied to GMOT (Luo and Kim
2013) and BLP (Luo et al. 2014) and is evaluated in terms of MT, ML, FM and IDS values. Results of the proposed method are
in the shaded columns. The arrows next to the metrics indicate the direction of better performance, e.g. ↑ means larger values
are better.

Sequence MT↑ ML↓ FM↓ IDS↓

GM
OT

GM
OT-A

TD

BLP
BLP-A

TD

GM
OT

GM
OT-A

TD

BLP
BLP-A

TD

GM
OT

GM
OT-A

TD

BLP
BLP-A

TD

GM
OT

GM
OT-A

TD

BLP
BLP-A

TD

Zebra .44 .43 .58 .61 .29 .30 .25 .25 36 27 30 26 6 3 7 1
Crab .10 .15 .21 .25 .71 .68 .69 .69 243 134 205 163 114 77 63 15
Antelope .37 .38 .69 .74 .37 .37 .18 .16 33 28 54 32 19 16 31 6
Goose .64 .71 .79 .79 .07 .07 .04 .04 52 38 36 19 28 27 33 12
Sailing .25 .50 .83 .83 .08 .08 .08 .08 99 85 45 40 33 11 12 8
Hockey .68 .71 .61 .68 .11 .11 .14 .11 27 23 24 10 17 9 20 3
Overall .34 .38 .51 .55 .41 .39 .34 .34 490 335 394 290 217 143 166 45

(c) due to the cannot-link set, if xt,i belongs to CNLt,
then zt,i must be different from all its cannot-link coun-
terparts. Thus zt,i should be sampled from the indi-
cators of all existing clusters excluding those of all
xt,i’s cannot-link counterparts. According to this, when
we compute the probability, we replace φt,1:k with
φt,1:k\φt,−i, where φt,−i is the set of clusters which
xt,i’s cannot-link counterparts belongs to, and \means
the set difference operation.

(2) We update cluster parameters given cluster
indicators by estimating P (φt,k|xt,k,·, φt−1,k) ∝
G0 (φt,k) f (xt,k,·|φt,k)P (φt,k|φt−1,k), where xt,k,· is the
set of observations associated with φt,k and f (xt,k,·|φt,k) is
the likelihood. P (φt,k|φt−1,k) encodes the cluster parame-
ter dynamics, which is inversely proportional to the distance
between the two Gaussian distributions corresponding to
φt,k and φt−1,k. Next we sample to update the state of the
cluster.

These two steps are carried out iteratively in each epoch,
resulting in observations with the same cluster indicator be-
ing linked into one trajectory, which corresponds to one ob-
ject. After each epoch we update the cluster parameters by
assigning the new instances.

6 Experiments
6.1 Data Sets & Settings
We apply our algorithm to two problems, (1) multi-
pedestrian tracking, requiring the output of an off-line
trained pedestrian detector as input and (2) generic multi-
object tracking (Zhao, Gong, and Medioni 2012; Luo and
Kim 2013; Luo et al. 2014), where multiple objects of any
type are detected and tracked. For the first problem, we use
the public ETHMS and TUD Stadtmitte data sets. For the
second problem, we employ public six data sets from (Luo
et al. 2014) named Zebra, Crab, Goose, Hockey, Sailing, and
Antelope. We divide videos into epochs which are composed
of approximate 50−200 frames, depending on the length of
the video. We set the dictionary dimension to 50 and η to
0.2 in all experiments. In the inference stage, for each epoch

we run Gibbs sampling for 500 iterations and report results
after the last iteration.

6.2 Metrics
To evaluate tracking performance we employ the metrics
proposed in (Wu and Nevatia 2006). These metrics include
mostly tracked (MT) ground-truth trajectories, mostly lost
(ML) ground-truth trajectories, fragmentation (FM), and ID
switches (IDS). MT is the percentage of the ground-truth tra-
jectories which are covered temporally for over 80% in time.
ML is the percentage of the ground-truth trajectories which
are recovered for less than 20% in length. The FM metric
counts the number of interruptions of the ground-truth tra-
jectories and IDS the number of times that the ground-truth
trajectories change their matched ID.

6.3 Results
The experiments are conducted in three parts. In the first part
we compare our approach to existing sequential approaches
(Luo and Kim 2013; Luo et al. 2014) in solving the generic
multi-object tracking problem. The second part compares
our algorithm with several state-of-the-art data associa-
tion algorithms (Pirsiavash, Ramanan, and Fowlkes 2011;
Xing, Ai, and Lao 2009) using the same detection results and
visual representation. The third part compares the method to
multi-pedestrian tracking approaches (Pellegrini et al. 2009;
Zhang, Li, and Nevatia 2008; Milan, Schindler, and Roth
2013; Leal-Taixé et al. 2014).

Part 1 – Comparison with Generic Multi-object Track-
ers In this part, we compare our automatic topic discov-
ery (ATD) algorithm with two state-of-the-art generic multi-
object trackers, GMOT (Luo and Kim 2013) and BLP (Luo
et al. 2014). For fairness we use the same detection results as
used in the methods that we compare with, allowing direct
comparison of the association performance. The results are
shown in Table 1. GMOT-ATD and BLP-ATD are the pro-
posed algorithms based on the same detection results from
the corresponding counterparts. The results of GMOT and
BLP are quoted from (Luo and Kim 2013) and (Luo et al.
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Table 2: Data association comparison, in terms of MT, ML, FM and IDS values. The best results are shown in bold.

Sequence MT↑ ML↓ FM↓ IDS↓

DA-H
DA-D

P

DA-S
SP

BL Ours DA-H
DA-D

P

DA-S
SP

BL Ours DA-H
DA-D

P

DA-S
SP

BL Ours DA-H
DA-D

P

DA-S
SP

BL Ours

Zebra .59 .55 .54 .60 .61 .25 .35 .35 .25 .25 28 32 31 27 26 3 2 7 3 1
Crab .24 .19 .19 .25 .25 .69 .70 .70 .69 .69 170 168 166 168 163 27 31 30 28 15
Antelope .75 .63 .63 .72 .74 .15 .27 .27 .15 .16 36 33 32 37 32 14 10 10 25 6
Goose .79 .64 .68 .79 .79 .03 .25 .32 .04 .04 34 31 29 25 19 25 20 18 14 12
Sailing .83 .83 .83 .83 .83 .08 .08 .08 .08 .08 42 45 44 40 40 10 9 8 8 8
Hockey .64 .54 .54 .68 .68 .14 .18 .18 .11 .11 12 11 10 12 10 11 7 6 6 3
Overall .54 .47 .46 .54 .55 .34 .41 .42 .33 .34 322 320 312 309 290 90 79 73 84 45

2014), respectively. Compared with GMOT our algorithm
reduces the quantity of FM and IDS by 32% and 34%. Com-
pared with BLP, the FM and IDS values are reduced by 26%
and 73%, respectively. This means that the proposed algo-
rithm tracks objects in the test sequences more consistently.
Note however, that the proposed algorithm is a batch algo-
rithm while both GMOT and BLP process the data sequen-
tially. The next set of experiments therefore directly com-
pares with batch data association methods.

Part 2 – Comparison with Data Association Algorithms
In this section we compare our method with a number of
data association algorithms, including (1) DA-H: the Hun-
garian algorithm (Xing, Ai, and Lao 2009), (2) DA-DP: dy-
namic programming in network flow (Pirsiavash, Ramanan,
and Fowlkes 2011), (3) DA-SSP: successive shortest path
in network flow (Pirsiavash, Ramanan, and Fowlkes 2011),
(4) BL: a baseline method of our algorithm without tempo-
ral dynamics, i.e. the video sequence is treated as a single
document without division into epochs. This can be viewed
as the application of standard DPMM to our problem. For
fairness, all algorithms are given the same detection results
from (Luo et al. 2014). The results of DA-DP and DA-SSP
are obtained using the code from (Pirsiavash, Ramanan, and
Fowlkes 2011).

Results in Table 2 indicate that (1) generally DA-H tends
to achieve good MT and ML values, meaning it is able to
track objects more completely. On the other hand, the per-
formance in terms of FM and IDS are worse than ours; (2)
DA-DP and DA-SSP obtain good FM and IDS values, in-
dicating that they can track objects more robustly and con-
sistently. DA-SSP achieves slightly better FM and IDS than
DA-DP. However, compared with DA-H, they tend to ignore
parts of trajectories, thus MT and ML values are worse than
those of DA-H; (3) compared with DA-H, BL has similar
MT and ML values while achieving better FM and IDS val-
ues, showing the effectiveness of applying a DPMM; (4) the
proposed method achieves the best performance. Compared
with BL, it further reduces the IDS and FM values.

Part 3 – Comparison with Pedestrian Trackers In this
part, we evaluate our method on the multiple pedestrian
tracking problem where the raw detection results are those
in (Milan, Schindler, and Roth 2013). We compare our re-
sults with those of the methods called SB (Pellegrini et al.

Table 3: Multi-pedestrian tracking results compared with
other state-of-the-art methods in terms of MT, ML, FM and
IDS values. The best results are shown in bold.

Sequence TUD-Stadtmitte ETHMS

DTE
Ours SB GDANF

DTE
M

C
Ours

MT↑ .400 .900 .516 .556 .664 .720 .589
ML↓ 0 0 .056 .062 .082 .047 .073
FM↓ 13 16 206 178 69 85 156
IDS↓ 15 13 77 138 57 71 103

2009), GDANF (Zhang, Li, and Nevatia 2008), DTE (Mi-
lan, Schindler, and Roth 2013), and MC (Leal-Taixé et al.
2014). SB develops a sophisticated dynamic model based on
social forces during association. GDANF casts data associ-
ation as finding the min-cost in network flow. DTE adopts
a CRF model for data association. The results are shown
in Table 3. On the TUD-Stadtmitte dataset, our algorithm
achieves better ML and IDS performance while obtaining
worse FM performance. On the ETHMS data set, the results
of the proposed method are comparable to those of SB and
GDANF, but worse than those of DTE and MC, which are all
methods tailored to this task. We suspect the reason is that
although we take the same raw detection hypotheses as in-
put, our approach does not include sophisticated appearance
or motion models. In contrast, the motion model in SB takes
the effect of pedestrians in a group into account, which is
helpful in reducing ID switches in the case of occlusion. The
method in GDANF includes a model named Explicit Occlu-
sion Model (EOM) which especially handles occlusion by
generating occlusion hypotheses and integrating them in the
network. Besides considering exclusivity constraints, a mo-
tion model based on angular velocity is taken into considera-
tion in DTE. MC achieves the best MT and ML performance
as a result of the contextual motion model, which is able to
recover trajectory components, even in the case of missed
detections, by learning a dictionary of interaction features
among objects. In our method we only consider the simple
but general super-pixel representation for appearance mod-
eling. The super-pixel representation inevitably suffers ef-
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fects from background clutter when representing non-rigid
objects such as pedestrians. On the other hand, our approach
can serve as a basic model to include more sophisticated ap-
pearance or motion models. These models may be integrated
into Eq. 6 to provide better likelihood functions.

7 Conclusion
This paper has introduced a topic model for the multi-
object tracking problem. Thanks to the DPMM, tracking
management is addressed by dynamical clustering. Along
with the introduced cannot-link constraints, the exclusivity
constraints are handled naturally. The dynamics of object
appearance variation and the temporal damping are mod-
eled by segmenting the video into temporal epochs. Experi-
ments on public data sets show the advantages of our method
over sequential solutions and other data association meth-
ods. Future work includes the incorporation of more sophis-
ticated models of appearance, motion and context in order
to improve the performance of specific applications such as
pedestrian tracking.
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