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Abstract

This paper presents a new incremental learning solution
for Linear Discriminant Analysis (LDA). We apply the con-
cept of thesufficient spanning setapproximation in each up-
date step, i.e. for the between-class scatter matrix, the pro-
jected data matrix as well as the total scatter matrix. The
algorithm yields a more general and efficient solution to in-
cremental LDA than previous methods. It also significantly
reduces the computational complexity while providing a so-
lution which closely agrees with the batch LDA result. The
proposed algorithm has a time complexity ofO(Nd2) and
requiresO(Nd) space, whered is the reduced subspace di-
mension andN the data dimension. We show two appli-
cations of incremental LDA: First, the method is applied
to semi-supervised learning by integrating it into an EM
framework. Secondly, we apply it to the task of merging
large databases which were collected during MPEG stan-
dardization for face image retrieval.

1. Introduction

Face descriptors have been proposed as candidates for
MPEG-7 standardization for face image retrieval in video
streams [5, 6, 8]. An ideal face descriptor should be ex-
tracted without any prior knowledge about the current im-
age content (person identity), i.e. it should be constructed
from images of persons other than those contained in the
test data. The descriptor should also be compact, even for
large data sets. A challenging problem is to retrieve face
images with large variations in lighting and pose when only
a single query image is given. Out of all methods, Lin-
ear Discriminant Analysis (LDA)-based description meth-
ods have shown the best performance in the MPEG-7 com-
petition [5, 6].

LDA finds the linear projections of data which best sep-
arate two or more classes under the assumption that the

classes have equal covariance Gaussian structure [2]. LDA
is an effective and widely employed technique for dimen-
sion reduction and feature extraction. It is often beneficial to
learn the LDA basis from large training sets, which may not
be available initially. This motivates techniques for incre-
mentally updating the discriminant components when more
data becomes available.

A number of incremental versions of LDA have been
suggested, which can be applied to on-line learning tasks [4,
7, 9, 14]. Ye et al. [14] proposed an incremental version of
LDA, which can include only a single new data point in
each time step. A further limitation is the computational
complexity of the method when the number of classesC
is large, as the method involves an eigendecomposition of
C × C-dimensional scatter matrices. Pang et al. [9] intro-
duced a scheme for updating the between-class and within-
class scatter matrices. However, no incremental method is
used for the subsequent LDA steps, i.e. eigenanalysis of
the scatter matrices, which remains computationally expen-
sive. Gradient-based incremental learning of a modified
LDA was proposed by Hiraoka et al. [4]. Limitations of
the method are that it includes only a single new data point
at each time step and that it requires setting a learning rate.
To circumvent the difficulty of incrementally updating the
product of scatter matrices, Yan et al. [13] used a modified
criterion by computing the difference of the between-class
and within-class scatter matrices. However, this may lead to
regularization problems of the two scatter matrices. Lin et
al. [7] dealt with the online update of discriminative mod-
els for the purpose of object tracking. As their task is bi-
nary classification, the discriminative model and the update
method are limited to the two-class case.

Inspiration for incremental LDA can be drawn from
work on incremental Principal Component Analysis (PCA).
Numerous algorithms have been developed to update the
eigenbasis as more data samples arrive. However, most
methods assume zero mean in updating the eigenbasis ex-
cept [3, 10] where the update of the mean is handled cor-
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Figure 1.On-line update of an LDA basis:The basis computed by the new incremental LDA algorithm (topright) closely agrees with the
one computed by batch LDA (bottom right). Shown for each scatter matrixST,i andSB,i are the first three principal components, which
are combined by merging eigenspaces.

rectly. The dimension of the eigenproblem can be reduced
by using thesufficient spanning set(a reduced set of ba-
sis vectors spanning the space of most data variation). As
the computation of the eigenproblem is cubic in the sub-
space dimension of the respective scatter matrix, this update
scheme is highly efficient.

It is also worth noting the existence of efficient algo-
rithms for kernel PCA and LDA [1, 12]. While studying the
incremental learning of such non-linear models is worth-
while, when considering retrieval from large data sets, the
computational cost of feature extraction of new samples is
as demanding as updating the models [5, 6, 8]. Also note
that the LDA method in [12] assumes a small number of
classes for the update, similar to [14].

This paper proposes a new solution for incremental
LDA, which is accurate as well as efficient in both time
and memory. The benefit of the proposed algorithm over
other LDA update algorithms [7, 14] lies in its ability to
efficiently handle large data sets with many classes. This
is particularly important for the face image retrieval task,
where hundreds of different face classes have to be merged.
An example of an LDA basis of face images is shown in
Figure 1. The result obtained with the incremental algo-
rithm closely agrees with the batch LDA solution. Note that
previous studies have not shown close agreement between
incremental and batch LDA solutions [12, 14].

In the proposed method an LDA criterion which is equiv-
alent to the Fisher criterion, namely maximizing the ratio
of the between-class and the total scatter matrix, is used to
keep the discriminative information during the update. First
the principal components of the two scatter matrices are ef-
ficiently updated and then the discriminant components are
efficiently computed from these two sets of principal com-
ponents. The concept of sufficient spanning sets is applied
in each step, making the eigenproblem computation effi-
cient.The algorithm is also memory efficient as it only needs
to store the two sets of principal components to avoid losing
discriminatory data.

The paper is structured as follows: Section 2 presents the
new incremental LDA algorithm. In section 3 we show how
it can be applied to semi-supervised learning within an EM-
framework. Experimental results for the task of merging
face databases are presented in section 4.

2. Incremental LDA

As noted by Fukunaga [2], there are equivalent variants
of Fisher’s criterion to find the projection matrixU to max-
imize class separability of the data set:

max
arg U

UT SBU

UT SWU
= max

arg U

UT ST U

UT SWU
= max

arg U

UTSBU

UT STU
, (1)

where
SB = ΣC

i=1ni(mi − µ)(mi − µ)T (2)

is the between-class scatter matrix,

SW = ΣC
i=1Σx∈Ci

(x − mi)(x − mi)
T (3)

is the within-class scatter matrix,

ST = Σall x(x − µ)(x − µ)T = SB + SW (4)

the total scatter matrix,C the total number of classes,ni

the sample number of classi, mi the mean of classi, and
µ the global mean. The algorithm in this paper uses the
third criterion in equation 1 and separately updates the prin-
cipal components as the minimal sufficient spanning sets of
SB andST . The scatter matrix approximation with a small
number of principal components (corresponding to signifi-
cant eigenvalues) allows an efficient update of the discrim-
inant components. TheST matrix rather thanSW is used
to avoid losing discriminatory data during the update. If we
only kept track of the significant principal components of
SB andSW , any discriminatory information contained in
the null space ofSW would be lost (note that any compo-
nent in the null space maximizes the LDA criterion). How-
ever, asST = SB + SW and bothSB andSW are positive



Figure 2.Concept of sufficient spanning setsof the total scatter matrix(left), the between-class scatter matrix(middle) and the projected
matrix (right) . The union set of the principal componentsP1,P2 or Q1,Q2 of the two data sets and the mean difference vectorµ

1
− µ

2

can span the respective total or between-class scatter dataspace(left and middle). The dimension for the componentm1i − m2i should
not be removed (cross=incorrect) from the sufficient set of the between-class scatter data but retained in the set (circle=correct)(middle).
The projection and orthogonalization of the original componentsQ31,Q32 yields the principal components of the projected data up to
rotation (right) . See the corresponding sections for detailed explanations.

semi-definite, vectors in the null space ofST are also in the
null space ofSB, and are thus being ignored in the update.

The three steps of the algorithm are: (1) Update the total
scatter matrixST , (2) Update the between-class scatter ma-
trix SB and (3) from these compute the discriminant com-
ponentsU. These steps are explained in more detail in the
following sections.

2.1. Updating the total scatter matrix

The total scatter matrix is approximated with a set
of orthogonal vectors that span the subspace occupied by
the data and represent it with sufficient accuracy. The
eigenspace merging algorithm of Hall et al. [3] can be used
with the slight modifications ([3] considered merging co-
variances) in order to incrementally compute the principal
components of the total scatter matrix: Given two sets of
data represented by eigenspace models

{µi, Mi,Pi,Λi}i=1,2, (5)

where µi is the mean,Mi the number of samples,Pi

the matrix of eigenvectors andΛi the eigenvalue ma-
trix of the i-th data set, the combined eigenspace model
{µ3, M3,P3,Λ3} is computed. Generally only a subset of
dT,i eigenvectors have significant eigenvalues and thus only
these are stored inΛi and the corresponding eigenvectors in
Pi. We wish to compute the eigenvectors and eigenvalues
of the new eigenspace model that satisfyST,3 ≃ P3Λ3P

T
3 .

The eigenvector matrixP3 can be represented by a suffi-
cient spanning set (see below for discussion) and a rotation
matrix as

P3 = ΦR = h([P1,P2, µ1 − µ2])R, (6)

whereΦ is the orthonormal column matrix spanning the
combined scatter matrix,R is a rotation matrix, andh is an
orthonormalization function (e.g. QR decomposition).

Using the sufficient spanning set, the eigenproblem is
converted into a smaller eigenproblem as

ST,3 = P3Λ3P
T
3 ⇒ ΦTST,3Φ = RΛ3R

T . (7)

By computing the eigendecomposition on the r.h.s. one ob-
tainsΛ3 andR as the respective eigenvalue and eigenvector
matrices. After removing nonsignificant components inR

according to the eigenvalues inΛ3, the minimal sufficient
spanning set is obtained asP3 = ΦR. Note the matrix
ΦTST,3Φ has the reduced sizedT,1 + dT,2 + 1 and the
dimension of the approximated combined total scatter
matrix isdT,3 ≤ dT,1 + dT,2 + 1, wheredT,1, dT,2 are the
number of the eigenvectors inP1 andP2 respectively. Thus
the eigenanalysis here only takesO((dT,1 + dT,2 + 1)3)
computations, whereas the eigenanalysis in batch mode (on
the l.h.s. of (7)) requiresO(min(N, M3)

3), whereN is the
dimension of the input data1. See Section 2.4 for a more
detailed discussion about the time and space complexity.

Discussion. We conclude this section by giving more in-
sight into the sufficient spanning set concept. Generally,
given a data matrixA, the sufficient spanning setΦ can be
defined as any set of vectors s.t.

B = ΦTA, A′ = ΦB = ΦΦTA ≃ A. (8)

That is, the reconstructionA′ of the data matrix by the suffi-
cient spanning set should approximate the original data ma-
trix. Let A ≃ PΛPT whereP,Λ are the eigenvector and

1When N ≫ M , the batch mode complexity can effectively be
O(M3) as follows:ST = YY

T , whereY = [...,xi−µ, ...]. SVD ofY
s.t. Y = UΣV

T yields the eigenspace model ofST by U andΣΣT as
the eigenvector and eigenvalue matrix respectively.Y

T
Y = VΣT ΣV

T

asUT
U = I. That is, by SVD of the low-dimensional matrixYT

Y, the
eigenvector matrix is efficiently obtained asYVΣ−1 and the eigenvalue
matrix asΣT Σ. This greatly reduces the complexity when obtaining the
eigenspace model of a small new data set in batch mode prior tocombin-
ing.



eigenvalue matrix corresponding to most energy. Then,PR

whereR is an arbitrary rotation matrix can be a sufficient
spanning set:

A′ = ΦΦTA ≃ PΛPT ≃ A (9)

asRRT = PT P = I. This also applies to the sufficient
spanning set in equation (6).

As visualized on the left of Figure 2, the union of the
two principal components and the mean difference vector
can span all data points of the combined set in the three-
dimensional space. The principal components of the com-
bined set are found by rotating this sufficient spanning set.

Note that this use of the sufficient spanning set is only
possible in the case of merging generative models where
the scatter matrix of the union set is represented as the sum
of the scatter matrices of the two sets explicitly as

ST,3 = ST,1 +ST,2 +M1M2/M3 · (µ1−µ2)(µ1−µ2)
T ,

(10)
where{ST,i}i=1,2 are the scatter matrices of the first two
sets. The method can therefore not be used to directly merge
the discriminant components of LDA models.

2.2. Updating the between-class scatter matrix

In the update of the total scatter matrix, a set of new
vectors are added to a set of existing vectors. The between-
class scatter matrix, however, is the scatter matrix of the
class mean vectors, see equation (12). Not only is a set of
new class means added, but the existing class means also
change when new samples belong to existing classes. Inter-
estingly, the proposed update can be interpreted as simulta-
neous incremental (adding new data points) and decremen-
tal (removing existing data points) learning (see below).

The principal components of the combined between-
class scatter matrix can be efficiently computed from the
two sets of between-class data, represented by

{µi, Mi,Qi,∆i, nij , αij |j = 1, ..., Ci}i=1,2, (11)

whereµi is the mean vector of the data seti, Mi is the to-
tal number of samples in each set,Qi are the eigenvector
matrices,∆i are the eigenvalue matrices ofSB,i, nij the
number of samples in classj of seti, andCi the number of
classes in seti. Theαij are the coefficient vectors of the
j-th class mean vectormij of seti with respect to the sub-
space spanned byQi, i.e.mij ≃ µi+Qiαij . The task is to
compute the eigenmodel{µ3, M3,Q3,∆3, n3j , α3j |j =
1, ..., C3} for the combined between-class scatter matrix.
To obtain the sufficient spanning set for efficient eigen-
computation, the combined between-class scatter matrix is
represented by the sum of the between-class scatter matrices
of the first two data sets, similar to (10). The between-class

scatter matrixSB,i can be written as

SB,i =

Ci∑

j=1

nij(mij − µi)(mij − µi)
T (12)

=

Ci∑

j=1

nijmijm
T
ij − Miµiµ

T
i . (13)

The combined between-class scatter matrix can further be
written w.r.t. the original between-class scatter matrices and
an auxiliary matrixA as

SB,3 = SB,1+SB,2+A+M1M2/M3·(µ1−µ2)(µ1−µ2)
T ,

(14)
where

A =
∑

k∈s

−n1kn2k

n1k + n2k
(m2k − m1k)(m2k − m1k)T . (15)

The sets = {k|k = 1, ..., c} contains the indices of the
common classes of both data sets. The matrixA needs
to be computed only when the two sets have common
classes, otherwise it is simply set to zero. If we assume
that each between-class scatter matrix is represented by the
first few eigenvectors such thatSB,1 ≃ Q1∆1Q

T
1 , SB,2 ≃

Q2∆2Q
T
2 , the sufficient spanning set for the combined

between-class scatter matrix can be similarly set as

Ψ = h([Q1,Q2, µ1 − µ2]), (16)

where the functionh is the orthonormalization function
used in section 2.1. Note that the matrixA is negative
semi-definite and does not add any more dimensions toΨ.
As illustrated in the middle of Figure 2, the sufficient span-
ning set can be a union set of the two eigen-components
and the mean difference vector. The negative semi-definite
matrix A can conceptually be seen as the scatter matrix
of the components to be removed from the combined data.
When ignoring the scale factors, the decremental elements
arem2i − m1i. This decreases the data variance along the
direction ofm2i−m1i but the respective dimension should
not be removed from the sufficient spanning set. The re-
sulting variance reduction along this direction is taken into
account when removing eigencomponents with nonsignifi-
cant eigenvalues in the subsequent eigenanalysis.

Let dB,i and N be the dimension ofQi and input
vectors, respectively. Whereas the eigenanalysis of the
combined between-class scatter in batch mode2 requires
O(min(N, C3)

3), the proposed incremental scheme re-
quires onlyO((dB,1 + dB,2 + 1)3) computation for solving

SB,3 = ΨR∆3R
TΨT ⇒ ΨT SB,3Ψ = R∆3R

T ,
(17)

2The batch solution of the between-class scatter matrix can be com-
puted using the low-dimensional matrix similarly to the total scatter matrix
whenN ≫ C. NoteSB,i = YYT , Y = [...,

√
nij(mij − µi), ...].



Algorithm 1. Incremental LDA (ILDA)

Input: The total and between-class eigenmodels of an ex-
isting data set,{P1, ...}, {Q1, ...} and a new data set
Output: Updated LDA componentsU

1. Compute{P2, ...}, {Q2, ...} from the new data set in batch
mode.

2. Update the total scatter matrix for{P3, ...}:
ComputeST,3 by (10) and{ST,i}i=1,2 ≃ PiΛiP

T
i .

SetΦ by (6) and compute the principal componentsR of
ΦT ST,3Φ. P3 = ΦR.

3. Update the between-class scatter for{Q3, ...}:
Obtain SB,3 from (14), {SB,i}i=1,2 ≃ Qi∆iQ

T
i and

mij ≃ µi + Qiαij .
Set Ψ by (16) and eigendecomposeΨT SB,3Ψ for the
eigenvector matrixR. Q3 = ΨR.

4. Update the discriminant components:
ComputeZ = P3Λ

−1/2

3
andΩ = h([ZT Q3]).

EigendecomposeΩT ZT Q3∆3Q
T
3 ZΩ for the eigenvector

matrixR. U = ZΩR.

Table 1.Pseudocode of Incremental LDA.

whereR is a rotation matrix. Finally, the eigenvectors of
the combined between-class scatter matrix, which are mem-
orized for the next update, are obtained byQ3 = ΨR af-
ter the components having zero eigenvalues inR are re-
moved, i.e.dB,3 ≤ dB,1 + dB,2 + 1. All remaining param-
eters of the updated model are obtained as follows:µ3 is
the global mean updated in Section 2.1,M3 = M1 + M2,
n3j = n1j + n2j , α3j = QT

3 (m3j − µ3), wherem3j =
(n1jm1j + n2jm2j)/n3j .

2.3. Updating discriminant components

After updating the principal components of the total
scatter matrix and the between-class scatter matrix, the dis-
criminative components are found using the updated to-
tal data{µ3, M3,P3,Λ3} and the updated between-class
data{µ3, M3,Q3,∆3, n3j , α3j |j = 1, ..., C3} using the

new sufficient spanning set. LetZ = P3Λ
−1/2

3 , then
ZTST,3Z = I. As the denominator of the LDA criterion is
the identity matrix in the projected space, the optimization
problem is to find the components that maximizeZT SB,3Z

s.t. WT ZTSB,3ZW = Λ and the final LDA components
are obtained byU = ZW. This eigenproblem of the pro-
jected data can be solved using the sufficient spanning set
defined by

Ω = h([ZTQ3]). (18)

See the right of Figure 2. The original components are pro-
jected and orthogonalized to construct the sufficient span-
ning set. The principal components of the projected data
can be found by rotating the sufficient spanning set. By this
sufficient spanning set, the eigenvalue problem changes into

Batch LDA Inc LDA

time O(NM2

3 O(d3

T,1 + d3

B,1

+min(N, M3)
3) +NdT,3dB,3)

space O(NM3 + NC3) O(NdT,3 + NdB,3)
Table 2.Comparison of time and space complexity:The savings
of incremental LDA are significant as usuallyM3 ≫ dT,3 ≥ dB,3.
N is the data dimension andM3, C3 are total number of data
points and classes, respectively,dT,i, dB,i are the dimensions of
the total and between-class scatter subspaces.

a smaller dimensional eigenvalue problem by

ZTSB,3Z = ΩRΛRTΩT ⇒ ΩT ZTSB,3ZΩ = RΛRT .
(19)

The final discriminant component is given as

ZW = ZΩR. (20)

This eigenproblem takesO(d3) time, whered is the dimen-
sion of Ω, which is equivalent todB,3, the dimension of
Q3. Note that in LDA,dT,3, the dimension ofP3 is usually
larger thandB,3 and therefore the use of the sufficient span-
ning set further reduces the time complexity of the eige-
nanalysis:O(d3

T,3) → O(d3
B,3). The pseudocode of the

complete incremental LDA algorithm is given in Table 1.

2.4. Time and space complexity

So far we have mainly considered the computational
complexity of solving the eigenproblem for merging two
data sets. Table 1 provides a comparison of the batch and
the proposed incremental LDA in total time complexity
(considering the necessary matrix products e.g. those in (7))
and space complexity, when the additional set is relatively
small compared to the existing set, i.e.M2 ≪ M1.

The computational saving of the incremental solution
compared to the batch version is large as normallyM3 ≫
dT,3 ≥ dB,3. Both time and space complexity of the pro-
posed incremental LDA are independent of the size of the
total sample set and the total number of classes. The im-
portant observation from the face data base merging experi-
ments (see Table 3) is that the intermediate dimensionsdT,3

anddB,3 do not increase significantly when new data is suc-
cessively added.

3. Semi-supervised incremental learning

This section deals with the LDA update when the class
labels of new samples are not given. Unlike incremental
learning of generative models [3, 10], discriminative
models such as LDA, require the class labels of additional
samples for the model update. The proposed incremental
LDA can be incorporated into a semi-supervised learn-
ing algorithm so that the LDA update can be computed



efficiently without the class labels of the additional data
set being known. For an overview of semi-supervised
learning, including an explanation of the role of unlabeled
data, see [15]. Although graph-based methods have been
widely adopted for semi-supervised learning [15], the
classic mixture model has long been recognized as a natural
approach to modeling unlabeled data. A mixture model
makes predictions for arbitrary new test points and typically
has a relatively small number of parameters. Additionally
mixture models are compatible with the proposed incre-
mental LDA model assuming multiple Gaussian-distributed
classes [2]. Here, classic EM-type learning is employed
to generate the probabilistic labels of the new samples.
Running EM in the updated LDA subspaces allows for
more accurate estimation of the class labels. We iterate the
E-step and M-step with all data vectors projected into the
LDA subspaces (similar to [11]), which are incrementally
updated in an intermediate step. The class posterior proba-
bilities of the new samples are set to the probabilistic labels.

Incremental LDA with EM. The proposed EM algorithm
employs a generative model with the most recent LDA
transformationU by

P (UT x|Θ) =

C∑

k=1

P (UT x|Ck; Θk)P (Ck|Θk), (21)

where classCk, k = 1, ..., C is parameterized byΘk, k =
1, ..., C, andx is a sample of the initial labeled setL and
the new unlabeled setU . The E-step and M-step are iter-
ated to estimate the MAP model over the projected samples
UTx of the labeled and unlabeled sets. The proposed incre-
mental LDA is performed every few iterations on the data
sets{xj , yj |xj ∈ L} and{xj , y

′

jk|xj ∈ U , k = 1, ..., C},
whereyj is the class label andy′

jk is the probabilistic class
label given as the class posterior probability

y′

jk = P (Ck|U
T xj). (22)

We set

m2i =

∑
j xjy

′

ji∑
j y′

ji

, n2i =

M2∑

j=1

y′

ji. (23)

for the update of the between-class scatter matrix. All other
steps for incremental LDA are identical to the description in
Section 2 as they are independent of class label information.
Discussion. Using a common covariance matrixΘk for
all class models rather thanC class covariance matrices is
more consistent with the assumption of LDA [2] and can
additionally save space and computation time during the M-
step. The common covariance matrix can be conveniently
updated byUT (ST,3 − SB,3)U/M3, where ST,3,SB,3

are the combined total and between-class scatter matrices,

which are kept track of in the incremental LDA as the as-
sociated first few eigenvector and eigenvalue matrices. The
other parameters ofΘ are also obtained from the output of
the incremental LDA algorithm.

So far it is assumed that the new data points are in one
of the existing classes, but this is not necessarily the case.
Samples with new class labels can be screened out so that
the LDA update is not biased to those samples by

y′

jk = P (Ck|U
T xj) · P (C|UT xj), (24)

whereP (C|UT xj) denotes a probability of a hyper class.
We can set this probability as being close to zero for sam-
ples with new class labels.

4. Experimental results

The algorithm was applied the task of face image re-
trieval from a large database. All experiments were per-
formed on a 3 GHz Pentium 4 PC with 1GB RAM.

4.1. Database and protocol

In the experiments we followed the protocols of evaluat-
ing face descriptors for MPEG-7 standardization [6]. Many
MPEG-7 proposals, including the winning method, have
adopted LDA features as their descriptors [5, 6]. A de-
scriptor vector is extracted without knowledge of the test
subject’s identity, i.e. its statistical basis should be gener-
ated from images of subjects other than those in the test
set. As it is necessary to learn the LDA basis from a very
large training set, which may not be available initially, the
proposed algorithm can be used to successively update the
LDA basis as more data becomes available. An experimen-
tal face database was obtained consisting of the version 1
MPEG data set (635 persons, 5 images per person), the
Altkom database (80 persons, 15 images per person), the
XM2VTSdatabase (295 persons, 5 images per person), and
the BANCAdatabase (52 persons, 10 images per person).
The version 1 MPEG data set itself consists of several pub-
lic face sets (e.g.AR, ORL). All 6370 images in the database
were normalized to46 × 56 pixels using manually labeled
eye positions. The images for the experiments were strictly
divided into training and test sets. All basis vectors were
extracted from the training set. All test images were used
as query images to retrieve other images of the correspond-
ing persons (called ground truth images) in the test data set.
As a measure of retrieval performance, we used the average
normalized modified retrieval rate (ANMRR) [8]. The AN-
MRR is 0 when images of the same person (ground truth
labeled) are ranked on top, and it is 1 when all images are
ranked outside the firstm images (m = 2NG, whereNG is
the number of ground truth images in the test data set).



LDA update M3 [# images] C3 [# classes] dT,3 [dim(St,3)] dB,3 [dim(Sb,3)]
1[first] – 10[final] 465–2315 93–463 158–147 85–85

Table 3.Efficient LDA update: Despite the large increase in the number of images and classes, the number of required principal compo-
nents,dT,3 anddB,3, remains small during the update process implying that computation time remains low.
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Figure 3.Database merging experiments for theMPEG+XM2VTS data set:The solution of incremental LDA closely agrees to the batch
solution while requiring much lower computation time. (a) Retrieval inaccuracy, ANMRR is 0 when all ground truth imagesare ranked on
top, and 1 when none of the ground truth images are ranked among the firstm images. (b) Computational cost.

4.2. Results

The training set was further partitioned into an initial
training set and several new sets which are added succes-
sively for re-training. We used the combined set of MPEG
andXM2VTSdatabase (the total number of classes is 930)
for the experiment where the new sets contain the images of
new classes. We also performed the experiments for theAl-
tkomandBANCAdatabase separately where the additional
sets contain new images of the existing classes of the ini-
tial training set. The proposed incremental LDA yielded
nearly the same solution as batch LDA for both scenar-
ios. The basis images of LDA of the incremental and batch
versions are compared in Figure 1. The accuracy of the
incremental solution can be seen in Figure 3 (a). Incre-
mental LDA yields essentially the same accuracy as batch
LDA, provided enough components are stored of the total
and between-class scatter matrices. This is an accuracy vs.
speed trade-off: using less components is clearly beneficial
in terms of computational cost. The subspace dimensions
for incremental learning were chosen from the eigenvalue
plots by setting a fixed threshold on the variance of each
component (similar results were obtained by choosing the
first components that contain a specified fraction of the to-
tal variance)3. Table 3 shows the number of components

3Note that accuracy of LDA is dependent on dimensionality of interme-
diate components (total scatter matrix) and final components (discriminant

selected during the experiment using theMPEG+XM2VTS
data set. Even if the total number of images or classes in-
creases, the number of components does not increase signif-
icantly, thus saving time and space (See section 2.4). The
computational costs of the batch and the incremental ver-
sion are compared in Figure 3 (b). Whereas the compu-
tational cost of the batch version increases significantly as
data is successively added, the cost of the incremental so-
lution remains low. Note that the cost of incremental LDA
is comparable to that of incremental PCA while giving a
much higher retrieval accuracy as shown in Figure 3 (a). In-
cremental PCA did not significantly increase the retrieval
accuracy.

Figure 4 shows the result of comparing the proposed
semi-supervised incremental LDA solution with the LDA
solution when the correct class labels are provided. For
this experiment the projection of all data points into the
LDA subspace was performed once with the most recent
LDA components before the EM iteration, and the incre-
mental LDA with the probabilistic labels was carried out
after EM converged, typically after ten iterations. The so-
lution boosted the retrieval accuracy even without the class
labels and its incremental solution yielding the same solu-
tion as the batch version. The cost of semi-supervised LDA
is slightly higher than that of incremental LDA, but still far

components). These dimensions were fixed for both bath LDA and ILDA
after incremental learning.
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Figure 4.Performance of semi-supervised incremental LDA:Semi-supervised incremental LDA decreases the error rate without the
class labels of new training data being available, while being as time-efficient as incremental LDA with given labels. (a) Retrieval
inaccuracy (ANMRR), (b) computational costs for theAltkom database. Similar results were obtained for theBANCA database.

lower than any batch-mode computation.

5. Conclusions

The proposed incremental LDA solution allows highly
efficient learning to adapt to new data sets. A solution
closely agreeing with the batch LDA result can be obtained
with far lower complexity in both time and space. The in-
cremental LDA algorithm can also be incorporated into a
classic semi-supervised learning framework and applied to
many other problems in which LDA-like discriminant com-
ponents are required. Directions for future research are the
extension to the non-linear case, adaptive learning with a
time-decaying function and using temporal information for
more efficient semi-supervised learning.
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