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Abstract

This paper introduces a method for analyzing floor
plan images using wall segmentation, object detection,
and optical character recognition. We introduce a chal-
lenging new real-estate floor plan dataset, R-FP, eval-
uate different wall segmentation methods, and propose
fully convolutional networks (FCN) for this task. We
explore architectures with different pixel-stride values
and more compact ones with skipped pooling layers.
An FCN-2s with a 2-pizel stride layer achieves state-
of-the-art performance, obtaining a mean Intersection-
over-Union score of 89.9% on R-FP, and 94.4% on the
public CVC-FP data set. Using OCR and object detec-
tion, we estimate room sizes. Finally, we show appli-
cations in automatic 3D model building and interactive
furniture fitting.

1 Introduction

Architectural floor plans are scaled drawings of
apartments or building layouts. They contain struc-
tural and semantic information, e.g. room types and
sizes, and the location of doors, windows, and fix-
tures. Floor plans are a common tool for real es-
tate agents in selling or renting out a space. Parsing
such images automatically has a number of applica-
tions, such as similarity search [1], CAD model gen-
eration, and 3D model creation for rendering and in-
teractive walkthroughs [6, 8, 10]. Floor plan analysis
has been an active research topic in the area of docu-
ment processing, but has mainly focused on processing
high-resolution scans. In this paper we instead focus
on readily available floor plan images from real estate
websites. These plans were created in a number of dif-
ferent drawing styles and are at lower resolution than
standard architectural documents. Previous methods
that rely on image binarization fail on most of these
images. We propose a learning-based approach to seg-
ment walls and detect objects. Deep networks have
been shown to perform well on semantic segmentation
tasks [2, 12, 14]. Specifically, we train fully convolu-
tional networks (FCN), explore different network archi-
tectures, and evaluate their performance, comparing
them with baseline methods. The main contributions
are: (1) a single method using an FCN for segmenting
walls in different drawing styles with state-of-the-art
performance, (2) a new dataset of 500 labeled floor
plan images from a real-estate website, and (3) appli-
cations in automatic 3D model generation and inter-
active furniture fitting. Having extracted the sizes of
walls from OCR, we are able to place furniture items
into the model at the correct scale.

2 Prior work

Early systems were designed for converting 2D floor
plans to 3D interactively, e.g. [6, 9, 10]. Two survey
papers provide a good review of methods for generat-
ing models from architectural plans [7, 15]. Many solu-
tions share a common pipeline which includes binariza-
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Figure 1: Parsing a floor plan image: The goal is
to obtain a model by segmenting walls, recognizing objects,
and estimating dimensions using OCR.

tion, structure and text separation, symbol recognition
and vectorization. Within the ScanPlan project, Mace
et al. detect walls and doors using the Hough trans-
form [11]. Wall polygons are partitioned iteratively
into rooms, assuming convex room shapes. Ahmed
et al. [1] process high-resolution images by segmenting
lines according to their thickness, followed by geomet-
rical reasoning to segment rooms. Doors are detected
using SURF descriptors. In our case, the input im-
ages are of lower resolution and standard binarization
fails on many images. De las Heras et al. [4] pro-
posed segmenting walls using the assumption of them
being a repetitive element, modeled by straight paral-
lel lines. This method performs well on high-resolution
images in different graphical styles. Similarly, Gimenez
et al. [8] binarize the floor plan images and detect
walls by looking for parallel lines separated by a dis-
tance within a predefined range. Wall thickness is de-
termined automatically by clustering the distance val-
ues. Unfortunately, the assumption of consistent wall
appearance does not hold in many of our input im-
ages. In [3] De las Heras et al. propose classifying im-
age patches using a bag-of-words (BoW) model. This
BoW model is tuned to each particular graphical style
in the CVC-FP data set, and is trained on each subset
of wall types with different parameters. Our method,
by contrast, is learned only once for all graphical styles
in the training set.

3 Parsing floor plans

We combine three methods to extract geometric and
semantic information: Wall segmentation, object de-
tection, and optical character recognition (OCR).

Wall segmentation. We use fully convolutional
networks (FCN) for segmenting wall pixels, follow-
ing [14]. We train models with different pixel-stride
value and compare FCN architectures for different fi-
nal stride layers to find the best stride value. Start-
ing with a FCN-32s with a 32-pixel stride, initialized
with VGG-16 parameters [14], in sequential training
each model is initialized with the parameters of the
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Figure 2: FCN with different stride values: Adding
layers with reduced stride increases performance according
to all three measures.

previous one. Following [14] all models are trained
by stochastic gradient descent with momentum (value
0.9, weight decay of 5~%) and a batch size of 1. The
learning rates are set to 1078, 1079, 10719, 10719, and
107! for FCN-32s to FCN-2s, respectively. These val-
ues are chosen by running two training procedures with
different learning rates for 10 epochs and chosing the
rate that reduces the error more rapidly. To intro-
duce a layer with smaller stride (by a factor of two)
we need to fuse two streams within the network: a
pooling layer, and a deconvolutional layer. For this
we ensure that the sizes and outputs of the layers is
consistent. For overviews of the network architectures,
please see the supplementary video. The FCNs are
compared with these baseline methods: The first base-
line uses a global threshold (GT) with the threshold
value determined using Otsu’s method. We addition-
ally use morphological closing to remove small lines
that are not walls (GT+MC). Finally, we remove text
regions from the image using the Google Vision API
(GT+MC+HTR). We also implement a patch-based ap-
proach to wall detection, including a BoW approach
suggested in [3]. We sample 10 x 10 pixel patches from
the image such that the patches have at least one dark
pixel (other pixels are assumed to be non-wall). We
take the PCA of the training patches (1000 per image)
and take the principal components that describe 95%
of the variance of the data for the CVC-FP data set
and 50 components for the R-FP dataset. We compare
three binary classifiers to determine which patches are
wall or non-wall: random forest (RF), linear support
vector machine (SVM), and BoW. During testing we
sample the image at a stride of 3 pixels. The final pre-
diction for each pixel is the mean of the predictions
from the overlapping boxes that contain the pixel.

Object detection. We use the Faster R-CNN
framework from [13] for object detection and recog-
nition, using a light-weight ZF network [16] for feature
map computation. A subset of the R-FP images was
annotated for training and testing, with 6 different ob-
ject classes (doors, sliding doors, kitchen stoves, bath
tubs, sinks, and toilets). The model is trained on 144
images for 150 epochs with ZF networks using top-
2000-score Region Proposal Networks.

Optical character recognition. Our input images
may contain both English and Japanese text. We use
the Google Vision API for text detection and character
recognition, which handles multiple languages.

3.1 Experimental Framework

Data sets. For evaluation, we collected a new
dataset, R-F'P, of 500 floor plan images from a pub-
lic real estate website. These images have different
sizes, with side lengths in the range of 156-1427 pixels.
The images were created as a tool for real-estate agents
and show some degree of artistic freedom, such as the
use of different color and shading schemes and decora-
tive elements. Compared with other public datasets,
this dataset exhibits a significant amount of variation.
Fig. 3 shows example images. We also evaluate on the
publicly available C'VC floor plan data set [5]. This
set includes 122 high-resolution images in four differ-
ent drawing styles.

Metrics. As evaluation metrics we use the mean
pixel accuracy and mean Intersection-over-Union
(IoU), as previously introduced in [14] as well as the
Jaccard Index (JI) for wall pixels as proposed in [3].

4 Results

Wall segmentation using FCN with different
strides. Figure 2 shows the increase in mean accu-
racy, mean loU, and Jaccard index when progressively
adding new layers with smaller stride values. Note that
a stride value of 2 is lower than in previous work on se-
mantic segmentation, where a stride value of 8 was sug-
gested [14]. In our layout prediction task, fusing even
shallower layers achieves further improvement. These
layers contain features representing local details such
as corners and edges, which are important for parsing
floor maps.

Wall segmentation on R-FP dataset. Wall seg-
mentation results on the new R-FP dataset are shown
in Table 1. The patch-based random forest classifier
slightly outperforms the baseline methods in terms of
mean [oU. FCN-2s networks, trained either in stages or
at once, perform best. Figure 3 shows sample results
by different segmentation methods. FCN-2s at-once
training results in comparable performance as FCN-
2s trained in stages, while reducing the training time
(20h for 400 iterations compared with 35h for staged
training, both on a GeForce 1080 GPU). The FCN-2s
network segments one image in approximately 0.14s.

Skip-layer architectures. For further investigating
the importance of fusion by different pooling layers, we
test the performance of two alternative network archi-
tectures, both skipping particular upsampling streams.
In the first, FCN-2s-skip-2-4, pool2 and pool/ layers are
skipped, which means two 8x and one 2x interpola-
tion layers are placed before the final output layer. In
the second architecture, FCN-2s-skip-2-3-4, addition-
ally pool3layer is skipped for training, which means one
16x and one 2x interpolation layers are placed before
the final output layer. The results in Table 1 show that
skipping pool2 and pool4 layers results in similar per-
formance to FCN-2s staged training, however, skipping
all layers pool2, pool3, and poolj layer leads to poorer
performance. The performance of training with skip
layers infers some feature redundancy in stream fu-
sion. F'CN-2s-skip-2-/ has a reduced training time of
18h and requires approximately 0.12s for segmenting
one image.

Evaluation on CVC-FP dataset. Wall segmenta-
tion results on the public CVC-FP dataset are shown
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Figure 3: Wall segmentation on images from the new R-FP data set. Global thresholding (GT-MC-TEXT) does
not handle decorative lines and symbols. The patch based segmentation (Patches-RF) cannot handle different drawing styles
with the same parameter settings. Segmentations by FCN-8s [14] are more blurred than those by the proposed FCN-2s. The
bottom row shows difficult example on which all methods perform poorly.

Method Mean acc. Mean IoU JI

Global Thresh. (GT) 90.1 73.7 53.0
GT+MC 90.1 73.7 53.0
GT+MC+TR 90.3 76.9 58.3
Patches - RF 89.7 77.6 59.3
Patches - SVM 82.1 72.3 49.6
Patches - BoW 89.5 75.8 56.3
FCN-2s 94.0 89.7 80.9
FCN-2s at-once 92.9 89.9 81.2
FCN-2s-skip-2-4 93.6 89.7 81.0
FCN-2s-skip-2-3-4 91.4 87.3 76.6

Table 1: Wall segmentation results on the new real
estate floor plan dataset (R-FP)

in Table 2. FCN-2s is also the top performing method
on this data set. Our patch-based baseline does not
achieve as good performance as reported by De Las
Heras et al. [3], however the main difference is that
we perform training with a single set of parame-
ters, whereas [3] choose different parameters for dif-
ferent image subsets. Another difference is the eval-
uation protocol. We perform 5-fold cross validation,
whereas [3] perform leave-one-out cross validation for
certain subsets of the dataset.

Cross-dataset performance. Table 3 shows the
performance of the FCN-2s model trained on one
dataset and tested on the other. Performance is poor,
largely owing to the differences in the drawing styles.
The R-FP dataset has many different types of wall im-
ages. Furthermore, the R-FP dataset is of floorplans in
Japan and the CVC-FP dataset is of floorplans from
Europe. The CVC-FP dataset consists of high qual-

Method Mean acc. Mean IoU JI

GT 78.7 69.6 41.5
GT+MC 95.1 80.1 61.9
GT+MC+TR 95.3 85.0 71.2
Patches - RF 92.8 89.3 79.2
Patches - SVM 92.6 89.0 78.5
Patches - BoW 93.0 87.9 76.6
FCN-2s 97.3 94.4 89.2

Table 2: Wall segmentation results on the public
CVC-FP dataset [5]

Training  Test Mean acc. Mean IoU  JI
CvC R 82.7 76.1 56.0
R + CVC R 94.0 90.5 82.5
R CvC 84.2 81.7 64.7
R+ CVC CVC 96.0 92.9 86.3

Table 3: Cross-dataset generalization. An FCN-2s
model trained on one data set generalizes poorly when test-
ing on the other. Training on the union of the training sets
boosts performance.

ity architectural floorplans, whereas the R-FP dataset
consists of floorplans from an internet real-estate web-
site. We also train a FCN-2s on the combined training
data, resulting in significantly improved results on both
test sets, in particular achieving better performance on
R-FP than the model trained on R-FP alone.

Object detection performance. The average pre-
cision evaluated on 25 test images is 96.0% for doors,
35.9% for sliding doors, 76.2% for kitchen ovens, 95.8%
for bath tubs, 69.2% for sinks, and 70.8% for toilets,
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Figure 4: Room size estimation example: room sizes
read with OCR in the input image (left) are propagated to
unlabeled rooms (right).

Figure 5: 3D model creation: Wall segmentation allows
automatic 3D model creation from floor plans (left). OCR
of room measurements allows inserting 3D furniture models
scaled to the scene (right).

for an ToU value of 50%. Using 300 region proposals,
the average detection time is about 50ms on a GeForce
1080 GPU.

Text detection performance. We labeled 20 im-
ages from the R-FP dataset with text locations and
values. For our applications (3D model generation and
furniture fitting), the most important text is the room
size. The OCR is able to detect and recognize 74.1% of
the room size annotations. Note that many floor plans
contain multiple size annotations.

4.1 Applications: 3D model creation and furni-
ture fitting

Using the wall segmentation from Section 3, we can
create an approximate 3D model of home layout solely
from the floorplan. A true 3D reconstruction of the
layout requires a-priori knowledge of the wall height.
In absence of this information, we arbitrarily choose a
height. To create the 3D model, we consider the wall
segmentation result as an elevation map, where all of
the walls are of uniform height. Figure 5 (left) shows
an example of fully automatic reconstruction.

Secondly using the segmentation information and
text information we can infer the area of rooms, as
well as the length of walls (Figure 4). Rooms are de-
limited by walls, (sliding) doors and windows. For each
segmented room, we query the text information for the
Japanese room measurement unit (Jo). We compute
the relationship between the room size in physical units
and pixels to compute the pixel density (in pixel/J).
This pixel density can be used to compute an estimate
of the area of rooms that are not labeled with physical
units, and well as can be used to compute wall length.
In addition, with the room size information we can es-
timate the fit of furniture in a room (Figure 5, right).
Please see the supplemental video for further results.

5 Conclusion

We show that an FCN with stride of 2 achieves bet-
ter performance than a stride of 8 as in [14]. The
smaller stride is effective because some walls can be
easily described by low level features. The FCN model
combines features from subsequent layers that describe
contextual information and texture information with
these low level features. Secondly, the smaller stride
allows us to predict more precise wall locations. Walls
are often very thin structures that cannot be precisely
predicted at larger strides.

From the floor plan we extract a parsed represen-
tation of wall locations, objects, and size information.
We show two example applications using this informa-
tion, 3D model creation and furniture fitting.
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