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Abstract— In this paper we provide novel insights about the
performance and design of popular pairwise tests-based local
binary descriptors with the aim of answering the question:
How many bits are needed for matching local binary descriptors?
We use the interpretation of binary descriptors as a Locality
Sensitive Hashing (LSH) scheme for approximating Kendall’s
tau rank distance between image patches. Based on this
understanding we compare local binary descriptors in terms of
the number of bits that are required to achieve a certain perfor-
mance in feature-based matching problems. Furthermore, we
introduce a calibration method to automatically determine a
suitable number of bits required in an image matching scenario.
We provide a performance analysis in image matching and
structure from motion benchmarks, showing calibration results
in visual odometry and object recognition problems. Our results
show that excellent performance can be achieved using a small
fraction of the total number of bits from the whole descriptor,
speeding-up matching and reducing storage requirements.

I. INTRODUCTION

Local image features are widely used in applications such
as object recognition, image registration, and Structure from
Motion (SfM). The principle is to detect repeatable image
keypoints, compute distinctive local image descriptors, and
match these between different images. Traditional vector-
based descriptors in floating-point representation such as
SIFT [1], SURF [2] and KAZE [3] achieve good performance
in most applications. However, the price to pay is the amount
of memory and time required for storing and matching these
descriptors.

Recently there has been significant interest in local binary
descriptors [4], [5], [6], [7], [8]. With the proliferation of
camera-enabled mobile devices with limited computational
resources, new binary descriptors have appeared that aim
to reduce computational complexity while retaining the
performance of vector-based descriptors. Binary descriptors
are compared using the Hamming distance, which is par-
ticularly efficient on dedicated bit-counting hardware. In
addition, the storage requirements are significantly lower
compared to vector-based descriptors, enabling large-scale
applications [9], [10]. Furthermore, binary descriptors are
widely used in robotics in applications such as visual Simul-
taneous Localization and Mapping (SLAM) [11] and place
recognition for detecting loop closure [12], [13].

The most extensive recent evaluation of binary descriptors
by Heinly et al. [14] evaluates descriptors on an extended
version of the Oxford benchmark dataset [15]. Recently,
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a similar evaluation focusing on mobile visual search ap-
plications has been carried out in [16]. These evaluations
of binary descriptors evaluate the descriptors in a similar
way to vector-based descriptors. In [17] it was shown that
the BRIEF descriptor [5] and similar binary descriptors
based on pairwise intensity comparisons can be interpreted
as a Locality Sensitive Hashing (LSH) approximation for
Kendall’s tau distance [18]. Kendall’s tau distance is a
metric on ranked lists, which counts the number of pairwise
disagreements between the two lists. It is commonly used
in document information retrieval, while here we apply it to
measure distances between image patches. We show that the
Hamming distance between binary descriptors is an unbiased
estimate of Kendall’s tau metric, we derive expressions for
its expectation and variance, and compare binary descriptors
in terms of the number of bits required to achieve certain
performance targets.

In most matching applications, the full length of the binary
descriptor is used by default. We show that this is not
necessary and that excellent performance can be achieved by
using a small number of bits, implying significant benefits in
terms of memory requirements and matching speed. Using
this evaluation, researchers can select the number of bits
for a desired level of performance in a particular applica-
tion. In particular, we consider experiments on benchmark
datasets for image matching and SfM. We introduce a novel
calibration method to automatically determine the number
of bits required in an image matching scenario, showing
experimental results in Visual Odometry (VO) and object
recognition tasks.

Our analysis includes new up-to-date binary descriptors,
in particular FREAK [4], BinBoost [19], LDB [8] and M-
LDB [20]. The discussion focuses on local binary descriptors
that are computed directly from pairwise tests. Other descrip-
tors that require supervised learning such as [21], [22] are
outside the scope of this paper.

II. LOCAL BINARY DESCRIPTORS

Local binary descriptors are built from a set of pairwise
intensity comparisons near the point of interest. Each bit in
the descriptor is the result of exactly one comparison. Most
binary descriptors differ in the spatial sampling pattern and
the descriptor length. The sampling pattern can be fixed or
adapted to obtain descriptors invariant to scale and rotation.
The set of pairwise comparisons is not limited to intensity
values; gradients and other image cues can also be used to
increase the discriminative power of the descriptors [8], [20].



Fig. 1: Binary descriptor computation. Given an image patch p
and a sampling pattern, one bit in the descriptor results from the
comparison of image intensities (left) or other image cues such
as gradients (right). The sampling pattern can be either fixed or
adapted to the dominant orientation and scale.

Considering a smoothed vectorized image patch p, a
binary test ϕ(·) is defined as

ϕ (p;x,y) :=

{
1 , if f(x) < f(y) , x 6= y
0 , otherwise

, (1)

where f(x) is a function that returns an image feature
response for a certain pixel x = (x, y) in the image
patch p. This function f(x) can simply be the smoothed
image intensity I at one pixel location, as proposed in [4],
[5], [6], [7]. Additionally, the function f(x) can also be
the concatenation of different binary comparisons such as
averaged image intensities Î or image gradients Lx, Ly on
a particular grid cell ci in the image patch p, as proposed
recently in [20], [8]. In this case each binary test returns a
single bit per pairwise comparison between similar channels

f(x) :=
{
Î(ci), Lx(ci), Ly(ci)

}
. (2)

Finally, the resulting descriptor dn(p) is computed as a vector
of n binary tests

dn(p) :=
∑

1≤i≤n

2i−1ϕ (p;xi,yi) , (3)

where the number of binary tests n is typically determined
empirically. Fig. 1 shows one example of a binary test in
an image patch, in which intensity and gradient comparisons
are considered.

A. Review of Local Binary Descriptors

This section briefly reviews recent binary descriptors,
which are evaluated in this paper. The BRIEF descriptor [5]
uses a rectangular sampling pattern from which the sampling
points are selected randomly from an isotropic Gaussian
distribution centered at the feature location. However, BRIEF
is not invariant to rotation or scale changes.

The BRISK descriptor [6] uses a symmetric sampling
pattern, where sample points are located in concentric circles
around the feature location. In the ORB [7] and FREAK [4]
descriptors the set of pairwise comparisons is learned from
training data. In contrast to BRIEF, these descriptors are
invariant to rotation and scale changes.

The LDB descriptor [8] increases the discriminative power
by including multiple image cues. It computes a binary string
based on binary tests of intensity and gradient differences on
grid cells within an image patch. Grids at different spatial

resolutions are used to increase the discriminative power.
The pairwise comparisons are selected either randomly or
by entropy-based bit selection. The main drawback of LDB
is that it is neither rotation nor scale invariant.

The M-LDB descriptor [20] is based on LDB, adding
rotation and scale invariance. While in the LDB descriptor
the mean intensities and derivatives are computed with
integral images, in M-LDB the intensities and derivatives are
obtained by sampling in the image scale space. Image deriva-
tives are computed with Scharr filters, which approximate
rotation invariance significantly better than other filters [23].
In summary, descriptors either use random bit selection
(BRIEF, LDB, M-LDB), learn the pairwise comparisons
(ORB, FREAK, LDB) or use a fixed pattern (BRISK).
Interestingly, BRIEF and LDB [5], [8] reported superior
matching results using a random bit selection scheme when
applied to matching in the Oxford benchmark dataset of
images with no geometric transforms.

III. INTERPRETATION OF BINARY DESCRIPTORS AS LSH
FOR KENDALL’S TAU RANK DISTANCE

The goal of binary descriptors extracted from image
patches is to obtain distinctive binary codes that can be
used efficiently in image matching applications. Similar
image patches should have similar binary codes with a
small Hamming distance; dissimilar image patches should
lead to binary codes with larger Hamming distances. This
goal is the same as in binary LSH schemes [24], [25] that
approximate distance computation by first applying hash
functions to larger data vectors and then computing the
Hamming distance between the resulting binary vectors. The
goal in LSH is to map similar objects to similar hash codes
with high probability. In contrast, local binary descriptors
directly build short binary descriptors by comparing the
intensities of pairs of points without ever creating a long
descriptor.

A. Kendall’s tau Rank Distance

Kendall’s tau rank distance is a metric that counts the
number of pairwise disagreements between two ranking
lists [18]. This metric is widely used in information retrieval,
where one is often faced with the problem of computing
the similarity or correlation between two ranked lists of
elements [26], [27]. Given two input data vectors p1 and
p2 of dimension d, the normalized Kendall’s tau distance
between these two data vectors is defined as

dτ (p1,p2) =
1(
d
2

) ∑
i<j

k
(
(xi,yj)p1

, (xi,yj)p2

)
. (4)

The function k
(
(xi,yj)p1

, (xi,yj)p2

)
is a symmetric ker-

nel function that returns 1 if the rankings are in disagreement,
i.e. π(xi)p1

> π(yj)p1
and π(xi)p2

< π(yj)p2
or the

opposite, and 0 if the rankings are in agreement. The
function π(xi)p represents the ranking of the element xi
in a particular image patch p.



B. LSH for Kendall’s tau Rank Distance

Let us consider a family of hash functions H operating
on a collection of image patches p of dimension d and
sampling pattern of

(
d
2

)
pairs. Each hash function h(p) ∈ H

selects one independent and random pairwise comparison
(i, j) from the sampling pattern, returning 1 if π(xi) >
π(yj) and 0 otherwise. For a distance threshold r and an
approximation factor c, the family of hash functions H is
called (r, cr, P1, P2)-sensitive if for any two image patches
p1 and p2:
• if p1 ∈ B(p2, r), then PrH [h(p1) = h(p2)] ≥ P1

• if p1 6∈ B(p2, cr), then PrH [h(p1) = h(p2)] ≤ P2,
where B(p2, r) represents a ball with distance r centered

at p2. In order to show that the family of hash functions H is
LSH for the Kendall’s tau rank distance, we require that P1 >
P2 [28]. Observe that the probability PrH [h(p1) = h(p2)]
is equal to the fraction of coordinates in which the rankings
of p1 and p2 agree. Therefore, P1 = 1− r/dp, while P2 =
1 − cr/dp, where dp =

(
d
2

)
. As long as the approximation

factor c is greater than 1, we have that P1 > P2 and the
property of LSH holds for H over the Kendall’s tau metric.

C. Relation between Binary Descriptors and Kendall’s tau
Rank Distance

Let us consider the binary descriptors from Section II
applied to two vectorized image patches p1 and p2 of
dimension d and a sampling pattern consisting of all pos-
sible pairwise comparisons

(
d
2

)
. The normalized Hamming

distance between the two binary descriptors is

dH(p1,p2) =
1(
d
2

) ∑
i<j

1 (ϕ (p1;xi,yj) 6= ϕ (p2;xi,yj)) .

(5)
where the function 1 (·) is the indicator function that re-
turns 1 if the output of the binary tests ϕ (p1;xi,yj) and
ϕ (p2;xi,yj) for a particular location (i, j) is different.

Clearly, the Hamming distance between two binary de-
scriptors is related to Kendall’s tau distance in Eq. 4, where
the binary test ϕ corresponds to the kernel function. A
binary descriptor such as BRIEF and those based on in-
tensity pairwise comparisons are effectively an LSH scheme
approximating Kendall’s tau distance between image patches.
Binary descriptors that use multiple cues in their pairwise
comparisons, such as LDB and M-LDB, can be interpreted
as sums of Kendall’s tau rank distance for each individual
cue.

1) Expectation and Variance of Kendall’s tau Approxi-
mation: The normalized Kendall’s tau rank distance is a
measure of the probability of disagreement between two
ranked lists. Since the family of hash functions h ∈ H is
an LSH scheme on Kendall’s tau distance, we can compute
the probability of disagreement between two ranking lists
as [24]:

Pr [h(p1) 6= h(p2)] = dτ (p1,p2). (6)

The Hamming distance between two image patches p1 and
p2 under H follows a binomial distribution with parameters

B(K, dτ (p1,p2)), the expectation of the Hamming distance
between two binary hash codes is

E[dH (h(p1), h(p2))] = Kdτ (p1,p2). (7)

That is, the expectation of the Hamming distance between
two binary hash codes of two image patches p1 and p2 is
an unbiased estimate of Kendall’s tau distance between them
up to a constant scale factor K. Then the variance of the
normalized Hamming distance can be shown to satisfy

Var

[
1

K
dH (h(p1), h(p2))

]
=
dτ (p1,p2)

K
(1− dτ (p1,p2)) .

(8)
The expression on the right shows that we require a certain
number of K bits to approximate Kendall’s tau distance with
a small variance. The number of bits that are required to
approximate Kendall’s tau distance with a certain accuracy
will be different for each local binary descriptor and each
matching scenario.

IV. HOW TO CALIBRATE YOUR BINARY DESCRIPTOR

In this section we introduce a calibration method to
automatically find a suitable number of bits in a particular
image matching scenario.

The root mean squared relative error (RMSRE) measures
the relative error between the target and the estimate. In
our case, the target is Kendall’s tau similarity between two
image patches (dτi ) and the estimate is the approximation
performed by the Hamming distance of two binary descrip-
tors (d̃τi ). According to Eq. 7, we just need to divide the
Hamming distance between two binary descriptors by K in
order to obtain an estimate of Kendall’s tau similarity. For a
set of M samples, the RMSRE is defined as

RMSRE =

(
1

M

M∑
i=1

||dτi − d̃τi ||2/||dτi ||2
) 1

2

. (9)

Each binary descriptor may exhibit different RMSRE
for different patches and image transformations. However,
regardless of the error in the approximation of Kendall’s tau
similarity, when the variance of the normalized Hamming
distance (see Eq.8) is very small, the ranking of the de-
scriptors does not change significantly. In order to have a
common measure to compare and evaluate different binary
descriptors, we introduce an error measure called Binary
Descriptor Approximation Error (BDAE) that combines the
RMSRE in the approximation of Kendall’s tau similarity and
the expectation of the variance of the normalized Hamming
distance:

BDAE(K) = 100 · RMSRE · E
[
Var

[
dH
K

]]
. (10)



Fig. 2: Datasets used in our experiments. Sample images from the
datasets used in our experiments for image matching, SfM, VO and
object recognition problems.

V. EXPERIMENTAL RESULTS

We use the interpretation of binary descriptors as LSH to
approximate Kendall’s tau distance between image patches
to carry out an analysis in terms of the number of bits that
are required to achieve a certain performance in standard
descriptor-based matching problems in Section V-A. We
then show results of our calibration method to automatically
determine a suitable number of bits required in VO and
object recognition problems in Section V-B.1 and V-B.2
respectively. Fig. 2 depicts some sample images from the
datasets used in our experiments.

A. Effect of the Number of Bits in Local Binary Descriptors

In our analysis we test the performance of BRIEF, ORB,
BRISK, FREAK, LDB and M-LDB in image matching
experiments on a subset of the image matching benchmark
proposed in [14] and SfM [29]. In addition, we compare the
performance of binary descriptors to two standard vector-
based descriptors (SURF, SIFT) and to BinBoost [19], which
is a binary descriptor that requires supervised learning.

We analyze the performance of different local binary
descriptors considering a common feature detector. In par-
ticular, we detect keypoints by finding local extrema of the
multi-scale determinant of Hessian operator in a Gaussian
scale space. As mentioned in [14], combining detectors and
descriptors that are scale-invariant is not trivial, since each
detector and descriptor uses its own definition for the scale
of a feature. In our evaluation, we adapt the scale of each
detected keypoint to an appropriate value as defined in the
original implementation of each descriptor. Regarding orien-
tation estimation, we use the orientation estimate provided
by each descriptor.

Given the detected keypoints in a reference and a query
image, we compute descriptors and obtain a set of putative
matches using the Nearest Neighbor Distance Ratio (NNDR)
strategy. This test compares the ratio distances between the
two best matches for a given keypoint and accepts the match
if the distance ratio is below 0.8. This is the same matching
strategy used in [14].

For all binary descriptors we start from an initial descriptor
length and increase the length of the descriptor in logarithmic
steps to the maximum descriptor size as defined in their
original implementations. For choosing the number of bits in
the descriptor, we perform LSH and randomly choose K bits
from the descriptor each time. We carry out 10 experiments
per random bit selection and average the results. We also
show averaged BDAE results, considering 10 experiments
per random bit selection in the LSH approximation per-
formed by the binary descriptors.

Our evaluation uses the OpenCV v3.0 implementations of
SIFT, SURF, BRIEF, ORB, BRISK and FREAK. For LDB,
M-LDB and BinBoost we use the original implementations
provided by the authors.

1) Image Matching: Our image matching evaluation in-
cludes a subset of the sequences from the extended Oxford
benchmark presented in [14]. The dataset includes several
image sets with different geometric and photometric trans-
formations such as image blur, lighting, viewpoint, scale
changes, zoom, rotation, and JPEG compression. In addition,
the ground truth homographies between reference and query
images are also available. We also use the Iguazu dataset [3]
for the image matching evaluation in the presence of Gaus-
sian noise.

We evaluate local binary descriptors performance by com-
puting recall versus the number of bits in the descriptor.
Recall is computed as:

recall =
#correct matches

#correspondences
. (11)

As defined in [15], recall measures how many of the
possible correct matches were actually found. The number
of correspondences is the number of matches that should
have been identified given the keypoint locations in both
images. For computing the number of correct matches we
geometrically verify the correspondences using the ground
truth information. The detected keypoints from the reference
image are projected into the query image. The error in
relative point location for two corresponding regions has to
be less than 2.5 pixels as also used in [14].

We test the performance of the binary descriptors in their
upright form, i.e. without rotation invariance. By avoiding
the computation of the descriptor with respect to a dominant
orientation, we can obtain increased discriminative power in
those sequences where rotation invariance is not required.
BRIEF and LDB are not rotation invariant, and therefore are
always computed in their upright form. We use the upright
version of SURF, SIFT, BinBoost, ORB, BRISK, FREAK
and M-LDB in the Iguazu, Venice, Leuven, Trees and UBC
datasets. We compute average results for all images in each
sequence.

Fig. 3 shows the recall versus number of bits graphs for the
image matching evaluation. We also show image matching
statistics for each sequence such as: maximum recall, the
number of bits K∗ for which BDAE = 0.01, and the number
of bits needed to match the performance of SURF and SIFT.
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Fig. 3: Image matching evaluation. Recall (RC) versus number of bits graphs and statistics for the image matching evaluation. (a) Iguazu
(Gaussian noise), (b) Venice (scale), (c) Leuven (lighting), (d) Rome rotation), (e) Trees (blur), (f) UBC (JPEG compression) sequences.
Best two global image matching statistics are in bold.

2) Structure from Motion: We evaluate binary descrip-
tors in a practical SfM application, using the Fountain and
Herz-Jesu datasets from [30]. The Fountain dataset contains
6 images, while the Herz-Jesu one contains 7 images. We
use the SfM pipeline from Bundler [29] to produce 3D
reconstructions and evaluate binary descriptors with respect
to the final number of reconstructed 3D points.

The number of reconstructed 3D points is an indicator
of how good the descriptors are: A higher number of 3D
points indicates that more descriptor matches have been
geometrically validated in the SfM pipeline, and therefore
descriptors are more discriminative. Fig. 4 depicts the num-
ber of reconstructed 3D points versus the number of bits and

associated SfM statistics.
3) Discussion: As can be observed in most of the experi-

ments, for each binary descriptor there is a certain number of
bits for which recall, precision, or number of reconstructed
3D points saturate. The explanation of this behavior is that
for that particular number of bits, the error in the variance
and the error in the LSH approximation performed by the
binary descriptors is small compared to the to Kendall’s tau
similarity variability. At this point we obtain little additional
improvement in the descriptor ranking by adding more bits
to the descriptor.

In the image matching experiments the number of bits for
which recall saturates is normally below 100. In general, M-
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Fig. 4: SfM evaluation. Number of reconstructed 3D points (3D)
versus number of bits graphs and statistics for the SfM evaluation.
(a) Fountain, (b) Herz-Jesu. Best two global SfM statistics are in
bold.

LDB obtains higher recall than the other binary descriptors
for all numbers of bits. One reason for this behavior is
that M-LDB also uses binary tests considering gradient
information, and therefore the bits in the descriptor are less
correlated than those descriptors that use intensity only. After
M-LDB, FREAK is a close second, followed by BRISK and
ORB. For those datasets where there is no change in rotation
and scale, BRIEF and LDB exhibit very good performance,
with LDB performance being slightly higher.

In the SfM experiments, vector-based descriptors ob-
tain slightly better results than binary descriptors, followed
closely by M-LDB, BRISK and FREAK. In the Fountain
dataset, M-LDB outperforms SIFT for bit sizes larger than
362 and almost matches SIFT performance in the Herz-
Jesu dataset with the full descriptor length. The number of
reconstructed 3D points tends to saturate for bit sizes in the
64–100 range for all binary descriptors. In datasets with per-
spective transforms (e.g. changes in viewpoint), vector-based
descriptors tend to perform better than binary ones, since
there is a higher variability between corresponding image
patches than in non-geometric transforms. This is a similar
conclusion as found in [14] where SIFT showed the best
performance considering perspective transforms. BinBoost
exhibits good performance in the SfM experiments, since
the descriptor was trained using image patches from SfM
datasets [31]. However, the descriptor does not generalize
well to other image transformations such as noise or blur.

In general, M-LDB obtains better performance than its
binary competitors in the three experiments. Note that in
some of the experiments, especially image matching, the
number of bits needed to match vector-based descriptors is
quite small for some descriptors such as M-LDB, BRISK
or FREAK. Furthermore, as shown in our experiments
the BDAE is a good indicator of the performance of the
descriptors. When BDAE is small (e.g. 0.01) the error in
the approximation and the variance is small and therefore
descriptors ranking do not change significantly by adding

more bits. This behavior seems to be consistent for all the
analyzed descriptors. This can have important consequences
for large-scale applications and camera-enabled mobile de-
vices since computing and matching vector-based descriptors
is a time-consuming operation compared to binary ones and
storage requirements are more demanding. In addition, the
computation of binary descriptors can be speeded up since
only few bits are necessary in most scenarios, and therefore
there is no need to compute the whole descriptor.

B. Calibration Experiments

1) Stereo Visual Odometry: We test our calibration
procedure considering the M-LDB descriptor in a feature-
based stereo VO scenario using the KITTI Odometry bench-
mark [32]. Stereo VO has the benefit over monocular VO that
an initial estimate of the scene geometry, i.e. 3D points, can
be computed from the 2D correspondences from the stereo
image pair at each timeframe. Our stereo VO system finds an
inlier subset of temporal 3D − 2D correspondences and an
approximate initial camera motion using AC-RANSAC [33].
After this step, the camera motion and 3D scene geometry
are refined by minimizing the 2D reprojection error of the
inlier point correspondences in the image domain.

A set of corresponding and non-corresponding image
patches is considered from sequence 01 in the KITTI Odom-
etry benchmark for the calibration. We consider a set of
70 frames, obtaining a total number of 364, 704 samples
for each category, ensuring that the variability of stereo VO
correspondences is sufficiently captured. Our corresponding
image patches include matches between the left and right
views of a stereo frame and also between consecutive frames,
using a brute-force approach for matching the descriptors
and a consistency check between the views. We carry out 10
runs per number-of-bits evaluation, averaging the normalized
Kendall’s tau estimates. The BDAE in Eq. 10 is evaluated
for a certain number of bits in the range K =

{
1, . . . ,

(
d
2

)}
.

Fig. 5(a) depicts the BDAE measure. The BDAE is equal
to 0.01 when K∗ = 120. As can be observed in Fig. 5(b),
for K = 120, the probability distributions of corresponding
and non-corresponding image patches obtained by the LSH
approximation are very similar compared to the ones ob-
tained with the normalized Kendall’s tau similarity. For this
number of bits, the error in the approximation is very small
and descriptor rankings remain nearly identical when adding
more bits in the LSH approximation.

We use the sequence 00 as a test sequence for our
calibration procedure. Stereo VO is performed considering
two LSH approximations (K = 32, 120) and the total length
of the M-LDB descriptor (K = 486). In addition we show
results considering the SIFT vector-based descriptor. We use
the evaluation consistent with the KITTI benchmark and
compute translational and rotational errors for all possible
subsequences of length (100, 150, 200, . . . , 800) meters.

Fig. 6(a) depicts the estimated trajectory considering the
LSH approximation with K∗ = 120, showing that the esti-
mated trajectory is very close to the ground truth trajectory.
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Fig. 6(b) shows the average translation errors. We observe
that the average translation errors are practically identical
when using the LSH approximation with K∗ = 120 com-
pared to the total length of the binary descriptor (K = 486)
or the SIFT descriptor. When using K = 32 the translation
error is slightly higher compared to the other values, since
the relative approximation error as shown in Fig. 5(a) is
still high and therefore descriptors are less discriminative,
leading to a higher chance of introducing outliers in the set
of correspondences. The rotational errors are very similar
in all experiments, obtaining an average rotation error of
0.0029 deg/m. The calibration experiment shows that for a
particular number of bits K∗ in the LSH approximation, the
relative approximation error is very small and we do obtain
no further improvement in a particular image matching
application by adding more bits. Therefore we can reduce
descriptor computation time (extraction and matching), as
well as storage requirements. For example, in our experiment
the storage requirements when using K∗ = 120 are reduced
almost by a factor of 4 compared to the total length of the
descriptor 486, and by a factor of 34 compared to SIFT
(128 floats× 32 bits/float = 4096 bits).

The proposed calibration method allows estimating the
suitable number of bits K∗ using just a small number of
training images. It therefore saves computation time com-
pared to exhaustively evaluating matching performance for
different descriptor sizes on large sequences typical in visual
odometry applications.

2) Object Recognition: We analyze the calibration of the
FREAK descriptor for object recognition using the Stanford
Mobile Visual Search dataset (SMVS) [34]. This dataset
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Fig. 7: Local binary descriptors calibration. (a) BDAE for FREAK
in the business cards category. (b) Precision scores for different
values of K.

contains 8 image categories (book covers, business cards, CD
covers, DVD covers, landmarks, paintings, video clips and
text documents). Each category has 100 reference images and
400 query images taken with different mobile phones and
a Canon Powershot G11, with exception of the landmarks
which contains 500 reference and query images.

The recognition process first finds keypoints and computes
descriptors on the reference images. For each query image,
we find matches between its keypoints and those of each
reference image. We estimate the homography between the
reference and query images using RANSAC with a repro-
jection error threshold of 2.5 pixels. The matches that do
not conform to the homography are discarded. The reference
image with more keypoint matches is selected if the number
of matches is above a threshold set to 10, as in [34].

We evaluate binary descriptors performance by computing
precision versus number of bits in the descriptor. Precision
is computed as:

precision =
#correctly matched images

#images matched
. (12)

We use the first ten corresponding images from the busi-
ness cards category to compute the BDAE. We considered an
average number of 3, 978 samples per image pair. Then, we
tested the performance of the FREAK descriptor considering
all the images from the book covers category. Fig. 7(a)
depicts the BDAE for the FREAK descriptor in the analyzed
images from the business cards category. Note, that this
scenario is more difficult than for the VO experiment. This
is because the reference and query sets were taken with
different cameras and under different image transformations
such as blur, rotations and viewpoint changes. Fig. 7(b)
shows the precision scores for the FREAK descriptor and
SIFT in the book covers category. In this example, for a
number of bits K∗ = 445, the BDAE is equal to 0.01 and
the precision is equal to 0.66, which corresponds to the 93%
of the maximum precision value when using the maximum
lenght of the descriptor.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a novel perspective for
the understanding and performance of pairwise test-based
local binary descriptors. Under the understanding that local



binary descriptors can be interpreted as an LSH scheme
that approximates Kendall’s tau similarity between image
patches, we showed that the Hamming distance between
binary descriptors is an unbiased estimate of Kendall’s tau
similarity and derived expressions for its expectation and
variance, explaining why descriptors rankings saturate at a
certain number of bits in image matching applications. Our
results reveal that excellent performance can be achieved
using just a small fraction of the total number of bits
from the whole descriptor, speeding up descriptor matching
and reducing storage requirements considerably compared to
vector-based descriptors. This insight is directly applicable to
mobile devices and robotics applications with limited com-
putational resources where the binary descriptor size may
be adapted to different requirements. In addition, we have
proposed a calibration method to automatically determine
a suitable number of bits required in an image matching
scenario. We hope that our findings will be useful for the
design of efficient binary descriptors.
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